408
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Enhanced high-strain-rate impact resistance of helicoidal composites by fused deposition modelling

, , , &
Pages 7796-7808 | Received 18 Aug 2021, Accepted 11 Nov 2021, Published online: 26 Nov 2021

References

  • H. Jopek and T. Strek, Torsion of a two-phased composite bar with helical distribution of constituents, Phys. Status Solidi B., vol. 254, no. 12, pp. 1700050, 2017. DOI: 10.1002/pssb.201700050.
  • H.H. Tsang and S. Raza, Impact energy absorption of bio-inspired tubular sections with structural hierarchy, Compos. Struct., vol. 195, pp. 199–210, 2018. DOI: 10.1016/j.compstruct.2018.04.057.
  • H. Yin, et al., In-plane crashworthiness of bio-inspired hierarchical honeycombs, Compos. Struct., vol. 192, pp. 516–527, 2018. DOI: 10.1016/j.compstruct.2018.03.050.
  • C. Morano, P. Zavattieri, and M. Alfano, Tuning energy dissipation in damage tolerant bio-inspired interfaces, J. Mech. Phys. Solids., vol. 141, pp. 103965, 2020. DOI: 10.1016/j.jmps.2020.103965.
  • Y-x Guo, M-q Yuan, and X-m Qian, Bionic stab-resistant body armor based on triangular pyramid structure, Defence Technol., vol. 17, no. 3, pp. 792–799, 2021. DOI: 10.1016/j.dt.2020.05.015.
  • U.G. Wegst, et al., Bioinspired structural materials, Nat. Mater., vol. 14, no. 1, pp. 23–36, 2015. DOI: 10.1038/nmat4089.
  • R. Yang, et al., AFM identification of beetle exocuticle: bouligand structure and nanofiber anisotropic elastic properties, Adv. Funct. Mater., vol. 27, no. 6, pp. 1603993, 2017. DOI: 10.1002/adfm.201603993.
  • J.C. Weaver, et al., The stomatopod dactyl club: a formidable damage-tolerant biological hammer, Science., vol. 336, no. 6086, pp. 1275–1280, 2012. DOI: 10.1126/science.1218764.
  • Odontodactylus scyllarus. Available from: https://baike.baidu.com/item/%E9%9B%80%E5%B0%BE%E8%9E%B3%E8%9E%82%E8%99%BE/2613126?fromtitle=Odontodactylus%20scyllarus&fromid=49878822&fr=aladdin.
  • N. Suksangpanya, et al., Crack twisting and toughening strategies in Bouligand architectures, Int. J. Solids Struct., vol. 150, pp. 83–106, 2018. DOI: 10.1016/j.ijsolstr.2018.06.004.
  • T. Hosome, S. Zaike, and T. Matsumoto, Bending characteristics of helicoidal laminated CFRP, Procedia Eng., vol. 171, pp. 1325–1331, 2017. DOI: 10.1016/j.proeng.2017.01.430.
  • H.-O. Fabritius, et al., Influence of structural principles on the mechanics of a biological fiber-based composite material with hierarchical organization: the exoskeleton of the lobsterhomarus americanus, Adv. Mater., vol. 21, no. 4, pp. 391–400, 2009. DOI: 10.1002/adma.200801219.
  • L.K. Grunenfelder, et al., Bio-inspired impact-resistant composites, Acta Biomater., vol. 10, no. 9, pp. 3997–4008, 2014. DOI: 10.1016/j.actbio.2014.03.022.
  • N. Guarin-Zapata, et al., Shear wave filtering in naturally-occurring Bouligand structures, Acta Biomater., vol. 23, pp. 11–20, 2015.
  • Z. Jia, et al., An experimental investigation of the temperature effect on the mechanics of carbon fiber reinforced polymer composites, Compos. Sci. Technol., vol. 154, pp. 53–63, 2018. DOI: 10.1016/j.compscitech.2017.11.015.
  • N. Guarín-Zapata, et al., Bandgap tuning in bioinspired helicoidal composites, J. Mech. Phys. Solids., vol. 131, pp. 344–357, 2019. DOI: 10.1016/j.jmps.2019.07.003.
  • B. Ribbans, Y. Li, and T. Tan, A bioinspired study on the interlaminar shear resistance of helicoidal fiber structures, J. Mech. Behav. Biomed. Mater., vol. 56, pp. 57–67, 2016. DOI: 10.1016/j.jmbbm.2015.11.004.
  • N. Suksangpanya, et al., Twisting cracks in Bouligand structures, J. Mech. Behav. Biomed. Mater., vol. 76, pp. 38–57, 2017. DOI: 10.1016/j.jmbbm.2017.06.010.
  • Y. Hu, W. Liu, and Y. Shi, Low-velocity impact damage research on CFRPs with Kevlar-fiber toughening, Compos. Struct., vol. 216, pp. 127–141, 2019. DOI: 10.1016/j.compstruct.2019.02.051.
  • S.K. Bhudolia, and S.C. Joshi, Low-velocity impact response of carbon fibre composites with novel liquid Methylmethacrylate thermoplastic matrix, Compos. Struct., vol. 203, pp. 696–708, 2018. DOI: 10.1016/j.compstruct.2018.07.066.
  • S. Long, X. Yao, and X. Zhang, Delamination prediction in composite laminates under low-velocity impact, Compos. Struct., vol. 132, pp. 290–298, 2015. DOI: 10.1016/j.compstruct.2015.05.037.
  • C. Zhang and K.T. Tan, Low-velocity impact response and compression after impact behavior of tubular composite sandwich structures, Compos Part B Eng., vol. 193, pp. 108026, 2020. DOI: 10.1016/j.compositesb.2020.108026.
  • B. Vieille, V.M. Casado, and C. Bouvet, About the impact behavior of woven-ply carbon fiber-reinforced thermoplastic- and thermosetting-composites: A comparative study, Compos. Struct., vol. 101, pp. 9–21, 2013. DOI: 10.1016/j.compstruct.2013.01.025.
  • R. Matadi Boumbimba, et al., Glass fibres reinforced acrylic thermoplastic resin-based tri-block copolymers composites: Low velocity impact response at various temperatures, Compos. Struct., vol. 160, pp. 939–951, 2017. DOI: 10.1016/j.compstruct.2016.10.127.
  • J.L. Liu, H.P. Lee, and V.B.C. Tan, Failure mechanisms in bioinspired helicoidal laminates, Compos. Sci. Technol., vol. 157, pp. 99–106, 2018. DOI: 10.1016/j.compscitech.2018.01.033.
  • D. Ginzburg, et al., Damage tolerance of bio-inspired helicoidal composites under low velocity impact, Compos. Struct., vol. 161, pp. 187–203, 2017. DOI: 10.1016/j.compstruct.2016.10.097.
  • J.L. Liu, H.P. Lee, and V.B.C. Tan, Effects of inter-ply angles on the failure mechanisms in bioinspired helicoidal laminates, Compos. Sci. Technol., vol. 165, pp. 282–289, 2018. DOI: 10.1016/j.compscitech.2018.07.017.
  • R.S. Sikarwar, R. Velmurugan, and N.K. Gupta, Influence of fiber orientation and thickness on the response of glass/epoxy composites subjected to impact loading, Compos Part B Eng., vol. 60, pp. 627–636, 2014. DOI: 10.1016/j.compositesb.2013.12.023.
  • Y. Chen, et al., Experimental investigation on normal and oblique ballistic impact behavior of fiber metal laminates, J. Reinf. Plast. Compos., vol. 32, no. 23, pp. 1769–1778, 2013. DOI: 10.1177/0731684413498434.
  • H. Jiang, et al., Low-velocity impact resistance behaviors of bio-inspired helicoidal composite laminates with non-linear rotation angle based layups, Compos. Struct., vol. 214, pp. 463–475, 2019. DOI: 10.1016/j.compstruct.2019.02.034.
  • V. Mahesh, S. Joladarashi, and S.M. Kulkarni, Damage mechanics and energy absorption capabilities of natural fiber reinforced elastomeric based bio composite for sacrificial structural applications, Defence Technol., vol. 17, no. 1, pp. 161–176, 2021. DOI: 10.1016/j.dt.2020.02.013.
  • V. Mahesh, S. Joladarashi, and S.M. Kulkarni, Comparative study on ballistic impact response of neat fabric, compliant, hybrid compliant and stiff composite, Thin-Wall Struct., vol. 165, pp. 107986, 2021. DOI: 10.1016/j.tws.2021.107986.
  • V. Mahesh, D. Harursampath, and V. Mahesh, An experimental study on ballistic impact response of jute reinforced polyethylene glycol and nano silica based shear thickening fluid composite, Defence Technol., 2021. DOI: 10.1016/j.dt.2021.03.013.
  • J. Hu, et al., Dynamic compressive behavior of woven flax-epoxy-laminated composites, Int. J. Impact Eng., vol. 117, pp. 63–74, 2018. DOI: 10.1016/j.ijimpeng.2018.03.004.
  • J. Arbaoui, M. Tarfaoui, and A. El Malki Alaoui, Mechanical behavior and damage kinetics of woven E-glass/vinylester laminate composites under high strain rate dynamic compressive loading: Experimental and numerical investigation, Int. J. Impact Eng., vol. 87, pp. 44–54, 2016. DOI: 10.1016/j.ijimpeng.2015.06.026.
  • W. Gao, et al., The status, challenges, and future of additive manufacturing in engineering, Comput-Aided. Des., vol. 69, pp. 65–89, 2015. DOI: 10.1016/j.cad.2015.04.001.
  • N. Li, G. Link, and J. Jelonnek, 3D microwave printing temperature control of continuous carbon fiber reinforced composites, Compos. Sci. Technol., vol. 187, pp. 107939, 2020. DOI: 10.1016/j.compscitech.2019.107939.
  • H. Yazdani Sarvestani, et al., 3D printed architected polymeric sandwich panels: Energy absorption and structural performance, Compos. Struct., vol. 200, pp. 886–909, 2018. DOI: 10.1016/j.compstruct.2018.04.002.
  • M. Lei, et al., 3D printed two-dimensional periodic structures with tailored in-plane dynamic responses and fracture behaviors, Compos. Sci. Technol., vol. 159, pp. 189–198, 2018. DOI: 10.1016/j.compscitech.2018.02.024.
  • R. Matsuzaki, et al., Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation, Sci. Rep., vol. 6, pp. 23058, 2016.
  • J. Li, et al., Numerical investigation of composite laminate subjected to combined loadings with blast and fragments, Compos. Struct., vol. 214, pp. 335–347, 2019. DOI: 10.1016/j.compstruct.2019.02.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.