247
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

A multivariate multiple regression analysis of tire-road contact peak triaxial stress by using machine learning methods

ORCID Icon, &
Pages 67-82 | Received 26 Sep 2021, Accepted 15 Nov 2021, Published online: 14 Dec 2021

References

  • S. Kim, P. E. Nikravesh, and G. Gim, A two-dimensional tire model on uneven roads for vehicle dynamic simulation, Veh. Syst. Dyn.., vol. 46, no. 10, pp. 913–930, 2008. DOI: 10.1080/00423110701729994.
  • G. Yanjin, Z. Guoqun, and C. Gang, 3-Dimensional non-linear FEM modeling and analysis of steady-rolling of radial tires, J. Reinf. Plast. Compos., vol. 30, no. 3, pp. 229–240, 2011. DOI: 10.1177/0731684410391516.
  • W. Wang, S. Yan, and S. Zhao, Experimental verification and finite element modeling of radial truck tire under static loading, J. Reinf. Plast. Compos., vol. 32, no. 7, pp. 490–498, 2013. DOI: 10.1177/0731684412474998.
  • H. Wang, and I. L. Al-Qadi, Evaluation of surface-related pavement damage due to tire braking, Road Materials and Pavement Design., vol. 11, no. 1, pp. 101–121, 2010. DOI: 10.3166/rmpd.11.101-121.
  • M. Guo, and X. Zhou, Consideration of the cross-anisotropy of different materials of the asphalt surface layer and temperature to determine pavement responses, Sci. Adv. Mater., vol. 13, no. 1, pp. 140–151, 2021. DOI: 10.1166/sam.2021.3781.
  • M. Shakiba, A. Gamez, I. L. Al-Qadi, and D. N. Little, Introducing realistic tire–pavement contact stresses into pavement analysis using nonlinear damage approach (PANDA), Int. J. Pavement Eng., vol. 18, no. 11, pp. 1027–1038, 2017. DOI: 10.1080/10298436.2016.1141412.
  • M. Ziyadi, and I. L. Al-Qadi, Efficient surrogate method for predicting pavement response to various tire configurations, Neural Comput. Appl., vol. 28, no. 6, pp. 1355–1367, 2017. DOI: 10.1007/s00521-016-2442-1.
  • G. Wang, and R. Roque, Three-dimensional finite element modeling of static tire-pavement interaction, Transportation Research Record., vol. 2155, no. 1, pp. 158–169, 2010. (): DOI: 10.3141/2155-17.
  • M. De Beer, and C. Fisher, Stress-In-Motion (SIM) system for capturing tri-axial tyre-road interaction in the contact patch. Measure. J. Int. Measure. Confederation., vol. 46, no. 7, pp. 2155–2173, 2013. DOI: 10.1016/j.measurement.2013.03.012.
  • Z. Jia, K. Fu, and M. Lin, Tire-pavement contact-aware weight estimation for multi-sensor WIM systems, Sensors (Switzerland)., vol. 19, no. 9, pp. 2027, 2019. DOI: 10.3390/s19092027.
  • K. T. Danielson, A. K. Noor, and J. S. Green, Computational strategies for tire modeling and analysis, Comput. Struct., vol. 61, no. 4, pp. 673–693, 1996. DOI: 10.1016/0045-7949(96)00051-X.
  • X. Yak, Finite element formulation of tire with static foundation contact and its application, J. Reinf. Plast. Compos, vol. 24, no. 16, pp. 1671–1696, 2005. DOI: 10.1177/0731684405050388.
  • T. Tang, D. Johnson, R. E. Smith, and S. D. Felicelli, Numerical evaluation of the temperature field of steady-state rolling tires, Appl. Math. Modell, vol. 38, no. 5-6, pp. 1622–1637, 2014. DOI: 10.1016/j.apm.2013.08.033.
  • H. Zhou, G. Wang, Y. Ding, J. Yang, C. Liang, and J. Fu, Effect of friction model and tire maneuvering on tire-pavement contact stress, Adv. Mater. Sci. Eng., vol. 2015, pp. 1–11, 2015. DOI: 10.1155/2015/632647.
  • S. Palanivelu, K. V. Narasimha Rao, and K. K. Ramarathnam, Determination of rolling tyre modal parameters using finite element techniques and operational modal analysis, Mech. Syst. Sig. Process., vol. 64-65, pp. 385–402, 2015. DOI: 10.1016/j.ymssp.2015.04.006.
  • J. H. Lee, Finite element modeling of interfacial forces and contact stresses of pneumatic tire on fresh snow for combined longitudinal and lateral slips, J. Terramech., vol. 48, no. 3, pp. 171–197, 2011. DOI: 10.1016/j.jterra.2010.12.003.
  • J. A. Hernandez, and I. L. Al-Qadi, Hyperelastic Modeling of Wide-Base Tire and Prediction of Its Contact Stresses, J. Eng. Mech., vol. 142, no. 2, pp. 04015084, 2016. DOI: 10.1061/(ASCE)EM.1943-7889.0001007.
  • J. A. Hernandez, and I. L. Al-Qadi, Tire–pavement interaction modelling: hyperelastic tire and elastic pavement, Road Mater. Pavement Des., vol. 18, no. 5, pp. 1067–1083, 2017. DOI: 10.1080/14680629.2016.1206485.
  • S. Kim, H. Park, B. Moon, K. Sung, J. M. Koo, and C. S. Seok, The prediction methodology for tire’s high speed durability regulation test using a finite element method, Int. J. Fatigue., vol. 118, pp. 77–86, 2019. DOI: 10.1016/j.ijfatigue.2018.08.036.
  • M. Guo, X. Li, M. Ran, X. Zhou, and Y. Yan, Analysis of contact stresses and rolling resistance of truck-bus tyres under different working conditions, Sustainability (Switzerland)., vol. 12, no. 24, pp. 10603–10616, 2020. DOI: 10.3390/su122410603.
  • M. Guo, and X. Zhou, Tire-Pavement Contact Stress Characteristics and Critical Slip Ratio at Multiple Working Conditions, Adv. Mater. Sci. Eng., vol. 2019, pp. 1–11, 2019. DOI: 10.55/2019/5178516.
  • D. De Gregoriis, F. Naets, P. Kindt, and W. Desmet, Development and validation of a fully predictive high-fidelity simulation approach for predicting coarse road dynamic tire/road rolling contact forces, J. Sound Vib., vol. 452, pp. 147–168, 2019. DOI: 10.1016/j.jsv.2019.04.011.
  • G. Anghelache, and R. Moisescu, Measurement of stress distributions in truck tyre contact patch in real rolling conditions, Veh. Syst. Dyn., vol. 50, no. 12, pp. 1747–1760, 2012. DOI: 10.1080/00423114.2012.674143.
  • G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. Control. Signal. Syst., vol. 2, no. 4, pp. 303–314, 1989. DOI: 10.1007/BF02551274.
  • K. Hornik, M. Stinchcombe, and H. White, Multilayer feedforward networks are universal approximators, Neural Netw., vol. 2, no. 5, pp. 359–366, 1989. DOI: 10.1016/0893-6080(89)90020-8.
  • K. I. Funahashi, On the approximate realization of continuous mappings by neural networks, Neural Netw., vol. 2, no. 3, pp. 183–192, 1989. DOI: 10.1016/0893-6080(89)90003-8.
  • A. Dogan, D. Birant, and A. Kut, Multi-Target Regression for Quality Prediction in a Mining Process, UBMK 2019 - Proceedings, 4th International Conference on Computer Science and Engineering. 2019:639–644. DOI: 10.1109/UBMK.2019.8907120.
  • H. Borchani, G. Varando, C. Bielza, and P. Larrañaga, A survey on multi-output regression, Wires. Data Mining Knowl. Discov., vol. 5, no. 5, pp. 216–233, 2015. DOI: 10.1002/widm.1157.
  • E. Spyromitros-Xioufis, G. Tsoumakas, W. Groves, and I. Vlahavas, Multi-target regression via input space expansion: treating targets as inputs, Mach. Learn., vol. 104, no. 1, pp. 55–98, 2016. DOI: 10.1007/s10994-016-5546-z.
  • F. Pérez-Cruz, G. Camps-Valls, E. Soria-Olivas, J. J. Pérez-Ruixo, A. R. Figueiras-Vidal, and A. Artés-Rodríguez, Multi-dimensional function approximation and regression estimation, In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 2415, pp. 757–762, 2002. DOI: 10.1007/3-540-46084-5_123.
  • G. De’ath, Multivariate regression trees: A new technique for modeling species-environment relationships, Ecology., vol. 83, no. 4, pp. 1105–1117, 2002. DOI: 10.1890/0012-9658(2002)083.[1105:MRTANT]2.0.CO;2
  • H. Taghavifar, and A. Mardani, Application of artificial neural networks for the prediction of traction performance parameters, J. Saudi Soc. Agric. Sci., vol. 13, no. 1, pp. 35–43, 2014. DOI: 10.1016/j.jssas.2013.01.002.
  • H. Taghavifar, and A. Mardani, Applying a supervised ANN (artificial neural network) approach to the prognostication of driven wheel energy efficiency indices, Energy., vol. 68, pp. 651–657, 2014. DOI: 10.1016/j.energy.2014.01.048.
  • H. Taghavifar, A. Mardani, and H. Karim Maslak, A comparative study between artificial neural networks and support vector regression for modeling of the dissipated energy through tire-obstacle collision dynamics, Energy., vol. 89, pp. 358–364, 2015. DOI: 10.1016/j.energy.2015.05.122.
  • H. Taghavifar, and A. Mardani, A comparative trend in forecasting ability of artificial neural networks and regressive support vector machine methodologies for energy dissipation modeling of off-road vehicles, Energy., vol. 66, pp. 569–576, 2014. DOI: 10.1016/j.energy.2014.01.022.
  • H. Taghavifar, A. Mardani, H. Karim-Maslak, and H. Kalbkhani, Artificial Neural Network estimation of wheel rolling resistance in clay loam soil, Appl. Soft Comput. J., vol. 13, no. 8, pp. 3544–3551, 2013. DOI: 10.1016/j.asoc.2013.03.017.
  • K. Çarman, and A. Taner, Prediction of tire tractive performance by using artificial neural networks, MCA., vol. 17, no. 3, pp. 182–192, 2012. DOI: 10.3390/mca17030182.
  • J. Masino, J. Pinay, M. Reischl, and F. Gauterin, Road surface prediction from acoustical measurements in the tire cavity using support vector machine, Appl. Acoust., vol. 125, pp. 41–48, 2017. DOI: 10.1016/j.apacoust.2017.03.018.
  • Y. X. Chen, L. Chen, C. Huang, Y. Lu, and C. Wang. A dynamic tire model based on HPSO-SVM, Int. J. Agric. Biol. Eng., vol. 12, no. 2, pp. 36–41, 2019. DOI: 10.25165/j.ijabe.20191202.3227.
  • Şerafettin Ekinci, Kazım Çarman, and Humar Kahramanlı, Investigation and modeling of the tractive performance of radial tires using off-road vehicles, Energy., vol. 93, pp. 1953–1963, 2015. DOI: 10.1016/j.energy.2015.10.070.
  • A. Madani, A. Bakhaty, J. Kim, Y. Mubarak, and M. R. K. Mofrad, Bridging Finite Element and Machine Learning Modeling: Stress Prediction of Arterial Walls in Atherosclerosis, J. Biomech. Eng., vol. 141, no. 8, 084502 (9 pages), 2019. DOI: 10.1115/1.4043290.
  • Z. Sheikh Khozani, K. Khosravi, M. Torabi, A. Mosavi, B. Rezaei, and T. Rabczuk, Shear stress distribution prediction in symmetric compound channels using data mining and machine learning models, Front. Struct. Civ. Eng., vol. 14, no. 5, pp. 1097–1109, 2020. DOI: 10.1007/s11709-020-0634-3.
  • J. Chapman, R. Batra, and R. Ramprasad, Machine learning models for the prediction of energy, forces, and stresses for Platinum, Comput. Mater. Sci., vol. 174, pp. 109483, 2020. DOI: 10.1016/j.commatsci.2019.109483.
  • J. Hauke, and T. Kossowski, Comparison of values of Pearson’s and spearman’s correlation coefficients on the same sets of data, Quaestiones. Geographicae., vol. 30, no. 2, pp. 87–93, 2011. DOI: 10.2478/v10117-011-0021-1.
  • W. S. McCulloch, and W. Pitts, A logical calculus of the ideas immanent in nervous activity, Bulletin of Mathematical Biophysics., vol. 5, no. 4, pp. 115–133, 1943. DOI: 10.1007/BF02478259.
  • C. Cortes, and V. Vapnik, Support-vector networks, Mach. Learn.., vol. 20, no. 3, pp. 273–297, 1995. 1995 20:3. DOI: 10.1007/BF00994018.
  • M. Sánchez-Fernández, M. de-Prado-Cumplido, GarcíaJ. Arenas, and F. Pérez-Cruz, SVM multiregression for nonlinear channel estimation in multiple-input multiple-output systems, IEEE Trans. Signal Process., vol. 52, no. 8, pp. 2298–2307, 2004. DOI: 10.1109/TSP.2004.831028.
  • F. Questier, R. Put, D. Coomans, B. Walczak, and YVander Heyden, The use of CART and multivariate regression trees for supervised and unsupervised feature selection, Chemometrics Intell. Lab. Syst., vol. 76, no. 1, pp. 45–54, 2005. DOI: 10.1016/j.chemolab.2004.09.003.
  • G. N. Smith, Probability and Statistics in Civil Engineering: An Introduction, Nichols Pub. Co, New York, pp. 225–228, 1986
  • Z. Zhang, and W. C. Hong, Application of variational mode decomposition and chaotic grey wolf optimizer with support vector regression for forecasting electric loads, Knowledge-Based Systems., vol. 228, pp. 107297, 2021. DOI: 10.1016/j.knosys.2021.
  • M. W. Li, Y. T. Wang, J. Geng, and W. C. Hong, Chaos cloud quantum bat hybrid optimization algorithm, Nonlinear Dyn., vol. 103, no. 1, pp. 1167–1193, 2021. DOI: 10.1007/s11071-020-06111-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.