671
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Influence of relative density distribution rules on the mechanical compression responses of additive manufactured Ti6Al4V graded lattice structures

, , , , , , & ORCID Icon show all
Pages 114-130 | Received 29 Aug 2021, Accepted 18 Nov 2021, Published online: 14 Dec 2021

References

  • C. Yan, L. Hao, A. Hussein, and D. Raymont, Evaluations of cellular lattice structures manufactured using selective laser melting, Int. J. Mach. Tools Manuf., vol. 62, pp. 32–38, 2012. DOI: 10.1016/j.ijmachtools.2012.06.002.
  • R. Gümrük and R.A.W. Mines, Compressive behaviour of stainless steel micro-lattice structures, Int. J. Mech. Sci., vol. 68, pp. 125–139, 2013. DOI: 10.1016/j.ijmecsci.2013.01.006.
  • I. Maskery, N.T. Aboulkhair, A.O. Aremu, C.J. Tuck, I.A. Ashcroft, R.D. Wildman, and R.J.M. Hague, A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., vol. 670, pp. 264–274, 2016. DOI: 10.1016/j.msea.2016.06.013.
  • X.Y. Zhang, G. Fang, L.L. Xing, W. Liu, and J. Zhou, Effect of porosity variation strategy on the performance of functionally graded Ti-6Al-4V scaffolds for bone tissue engineering, Mater. Des., vol. 157, pp. 523–538, 2018. DOI: 10.1016/j.matdes.2018.07.064.
  • D.W. Abueidda, I. Jasiuk, and N.A. Sobh, Acoustic band gaps and elastic stiffness of PMMA cellular solids based on triply periodic minimal surfaces, Mater. Des., vol. 145, pp. 20–27, 2018. DOI: 10.1016/j.matdes.2018.02.032.
  • X. An, C. Lai, W. He, and H. Fan, Three-dimensional meta-truss lattice composite structures with vibration isolation performance, Extreme Mech. Lett., vol. 33, pp. 100577, 2019. DOI: 10.1016/j.eml.2019.100577.
  • L. Bai, C. Yi, X. Chen, Y. Sun, and J. Zhang, Effective design of the graded strut of BCC lattice structure for improving mechanical properties, Materials, vol. 12, no. 13, pp. 2192, 2019. DOI: 10.3390/ma12132192.
  • P. J´Anos and P. Ajit, Effect of density and unit cell size grading on the stiffness and energy absorption of short fibre-reinforced functionally graded lattice structures, Addit. Manuf., vol. 33, pp. 101171, 2020.
  • J. Liu, T. Chen, Y. Zhang, G. Wen, Q. Qing, H. Wang, R. Sedaghati, and Y.M. Xie, On sound insulation of pyramidal lattice sandwich structure, Compos. Struct., vol. 208, pp. 385–394, 2019. DOI: 10.1016/j.compstruct.2018.10.013.
  • B. Vaissier, J.-P. Pernot, L. Chougrani, and P. Véron, Parametric design of graded truss lattice structures for enhanced thermal dissipation, Comput.-Aided Des., vol. 115, pp. 1–12, 2019. DOI: 10.1016/j.cad.2019.05.022.
  • S. Daynes, S. Feih, W.F. Lu, and J. Wei, Optimisation of functionally graded lattice structures using isostatic lines, Mater. Des., vol. 127, pp. 215–223, 2017. DOI: 10.1016/j.matdes.2017.04.082.
  • S.Y. Choy, C.-N. Sun, K.F. Leong, and J. Wei, Compressive properties of functionally graded lattice structures manufactured by selective laser melting, Mater. Des., vol. 131, pp. 112–120, 2017. DOI: 10.1016/j.matdes.2017.06.006.
  • I. Maskery, A. Hussey, A. Panesar, A. Aremu, C. Tuck, I. Ashcroft, and R. Hague, An investigation into reinforced and functionally graded lattice structures, J. Cell Plast., vol. 53, no. 2, pp. 151–165, 2017. DOI: 10.1177/0021955X16639035.
  • J. Plocher and A. Panesar, Mechanical performance of additively manufactured fiber-reinforced functionally graded lattices, JOM., vol. 72, no. 3, pp. 1292–1298, 2020. DOI: 10.1007/s11837-019-03961-3.
  • E. Onal, J. Frith, M. Jurg, X. Wu, and A. Molotnikov, Mechanical Properties and In Vitro Behavior of Additively Manufactured and Functionally Graded Ti6Al4V Porous Scaffolds, Metals, vol. 8, no. 4, pp. 200, 2018. DOI: 10.3390/met8040200.
  • L. Bai, C. Gong, X. Chen, Y. Sun, L. Xin, H. Pu, Y. Peng, and J. Luo, Mechanical properties and energy absorption capabilities of functionally graded lattice structures: Experiments and simulations, Int. J. Mech. Sci., vol. 182, pp. 105735, 2020. DOI: 10.1016/j.ijmecsci.2020.105735.
  • L. Xiao and W. Song, Additively-manufactured functionally graded Ti-6Al-4V lattice structures with high strength under static and dynamic loading: Experiments, Int. J. Impact Eng., vol. 111, pp. 255–272, 2018. DOI: 10.1016/j.ijimpeng.2017.09.018.
  • S.F. Khosroshahi, S.A. Tsampas, and U. Galvanetto, Feasibility study on the use of a hierarchical lattice architecture for helmet liners, Mater. Today Commun., vol. 14, pp. 312–323, 2018. DOI: 10.1016/j.mtcomm.2018.02.002.
  • L. Chen, J. Zhang, B. Du, H. Zhou, H. Liu, Y. Guo, W. Li, and D. Fang, Dynamic crushing behavior and energy absorption of graded lattice cylindrical structure under axial impact load, Thin-Walled Struct., vol. 127, pp. 333–343, 2018. DOI: 10.1016/j.tws.2017.10.048.
  • Y. Wang, B. Ramirez, K. Carpenter, C. Naify, D.C. Hofmann, and C. Daraio, Architected lattices with adaptive energy absorption, Extreme Mech. Lett., vol. 33, pp. 30225–30221, 2019.
  • L. Bai, C. Gong, X.H. Chen, Y.X. Sun, J.F. Zhang, L.C. Cai, S.Y. Zhu, and S.Q. Xie, Additive manufacturing of customized metallic orthopedic implants: Materials, structures, and surface modifications, Metals, vol. 9, no. 9, pp. 26, 2019. DOI: 10.3390/met9091004.
  • S.E. Alkhatib, F. Tarlochan, H. Mehboob, R. Singh, K. Kadirgama, and W. Harun, Finite element study of functionally graded porous femoral stems incorporating body-centered cubic structure, Artif. Organs., vol. 43, no. 7, pp. E152–E164, 2019. DOI: 10.1111/aor.13444.
  • X. Wang, S. Xu, S. Zhou, W. Xu, M. Leary, P. Choong, M. Qian, M. Brandt, and Y.M. Xie, Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review, Biomaterials, vol. 83, pp. 127–141, 2016. DOI: 10.1016/j.biomaterials.2016.01.012.
  • Y. Duan, X. Zhao, Z. Liu, N. Hou, H. Liu, B. Du, B. Hou, and Y. Li, Dynamic response of additively manufactured graded foams, Compos. Pt. B-Eng., vol. 183, pp. 107630, 2020. DOI: 10.1016/j.compositesb.2019.107630.
  • B. Koohbor, S. Ravindran, and A. Kidane, In situ deformation characterization of density-graded foams in quasi-static and impact loading conditions, Int. J. Impact Eng., vol. 150, pp. 103820, 2021. DOI: 10.1016/j.ijimpeng.2021.103820.
  • Q. Wu, L. Ma, Q. Liu, L. Feng, Z. Wang, A. Ohrndorf, H.J. Christ, and J. Xiong, Impact response and energy absorption of human skull cellular bones, J. Mech. Behav. Biomed. Mater., vol. 81, pp. 106–119, 2018. DOI: 10.1016/j.jmbbm.2018.02.018.
  • J. Zheng, Q. Qin, and T.J. Wang, Impact plastic crushing and design of density-graded cellular materials, Mech. Mater., vol. 94, pp. 66–78, 2016. DOI: 10.1016/j.mechmat.2015.11.014.
  • M. Mahbod and M. Asgari, Elastic and plastic characterization of a new developed additively manufactured functionally graded porous lattice structure: Analytical and numerical models, Int. J. Mech. Sci., vol. 155, pp. 248–266, 2019. DOI: 10.1016/j.ijmecsci.2019.02.041.
  • D.S.J. Al-Saedi, S.H. Masood, M. Faizan-Ur-Rab, A. Alomarah, and P. Ponnusamy, Mechanical properties and energy absorption capability of functionally graded F2BCC lattice fabricated by SLM, Mater. Des., vol. 144, pp. 32–44, 2018. DOI: 10.1016/j.matdes.2018.01.059.
  • I. Maskery, A.O. Aremu, L. Parry, R.D. Wildman, C.J. Tuck, and I.A. Ashcroft, Effective design and simulation of surface-based lattice structures featuring volume fraction and cell type grading, Mater. Des., vol. 155, pp. 220–232, 2018. DOI: 10.1016/j.matdes.2018.05.058.
  • Y. Li, H. Jahr, P. Pavanram, F.S.L. Bobbert, U. Paggi, X.Y. Zhang, B. Pouran, M.A. Leeflang, H. Weinans, J. Zhou, and A.A. Zadpoor, Additively manufactured functionally graded biodegradable porous iron, Acta Biomater., vol. 96, pp. 646–661, 2019. DOI: 10.1016/j.actbio.2019.07.013.
  • H. Zhou, M. Zhao, Z. Ma, D.Z. Zhang, and G. Fu, Sheet and network based functionally graded lattice structures manufactured by selective laser melting: Design, mechanical properties, and simulation, Int. J. Mech. Sci., vol. 175, pp. 105480, 2020. DOI: 10.1016/j.ijmecsci.2020.105480.
  • F. Liu, Z. Mao, P. Zhang, D.Z. Zhang, J. Jiang, and Z. Ma, Functionally graded porous scaffolds in multiple patterns: New design method, physical and mechanical properties, Mater. Des., vol. 160, pp. 849–860, 2018. DOI: 10.1016/j.matdes.2018.09.053.
  • O. Al-Ketan, D.W. Lee, R. Rowshan, and R.K. Abu Al-Rub, Functionally graded and multi-morphology sheet TPMS lattices: Design, manufacturing, and mechanical properties, J. Mech. Behav. Biomed. Mater., vol. 102, pp. 103520, 2020. DOI: 10.1016/j.jmbbm.2019.103520.
  • S. Vijayavenkataraman, L. Zhang, S. Zhang, J.Y. Hsi Fuh, and W.F. Lu, Triply periodic minimal surfaces sheet scaffolds for tissue engineering applications: An optimization approach toward biomimetic Scaffold design, ACS Appl. Bio Mater., vol. 1, no. 2, pp. 259–269, 2018. DOI: 10.1021/acsabm.8b00052.
  • S. Vijayavenkataraman, L.Y. Kuan, and W.F. Lu, 3D-printed ceramic triply periodic minimal surface structures for design of functionally graded bone implants, Mater. Des., vol. 191, pp. 108602, 2020. DOI: 10.1016/j.matdes.2020.108602.
  • J. Feng, J. Fu, C. Shang, Z. Lin, and B. Li, Porous scaffold design by solid T-splines and triply periodic minimal surfaces, Comput. Meth. Appl. Mech. Eng., vol. 336, pp. 333–352, 2018. DOI: 10.1016/j.cma.2018.03.007.
  • F. Leonardi, S. Graziosi, R. Casati, F. Tamburrino, and M. Bordegoni, Additive manufacturing of heterogeneous lattice structures: An experimental exploration, Proc. Des. Soc. Int. Conf. Eng. Des., vol. 1, no. 1, pp. 669–678, 2019.
  • S. Li, S. Zhao, W. Hou, C. Teng, Y. Hao, Y. Li, R. Yang, and R.D.K. Misra, Functionally graded Ti-6Al-4V meshes with high strength and energy absorption, Adv. Eng. Mater., vol. 18, no. 1, pp. 34–38, 2016. DOI: 10.1002/adem.201500086.
  • J. Zhang, B. Song, L. Yang, R. Liu, L. Zhang, and Y. Shi, Microstructure evolution and mechanical properties of TiB/Ti6Al4V gradient-material lattice structure fabricated by laser powder bed fusion, Compos. Pt. B-Eng., vol. 202, pp. 108417, 2020. DOI: 10.1016/j.compositesb.2020.108417.
  • J. Mueller and K. Shea, Stepwise graded struts for maximizing energy absorption in lattices, Extreme Mech. Lett., vol. 25, pp. 7–15, 2018. DOI: 10.1016/j.eml.2018.10.006.
  • H. Chung and S. Das, Functionally graded Nylon-11/silica nanocomposites produced by selective laser sintering, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., vol. 487, no. 1–2, pp. 251–257, 2008. DOI: 10.1016/j.msea.2007.10.082.
  • L.J. Gibson and M.F. Ashby, Cellular Solids, 2nd ed., Cambridge University Press, Cambridge (England), 1997.
  • A.G. Evans, J.W. Hutchinson, N.A. Fleck, M.F. Ashby, and H.N.G. Wadley, The topological design of multifunctional cellular metals, Prog. Mater. Sci., vol. 46, no. 3–4, pp. 309–327, 2001. DOI: 10.1016/S0079-6425(00)00016-5.
  • A.A. Zadpoor and R. Hedayati, Analytical relationships for prediction of the mechanical properties of additively manufactured porous biomaterials, J. Biomed. Mater. Res. A, vol. 104, no. 12, pp. 3164–3174, 2016. DOI: 10.1002/jbm.a.35855.
  • R. Hedayati, M. Sadighi, M. Mohammadi-Aghdam, and A.A. Zadpoor, Effect of mass multiple counting on the elastic properties of open-cell regular porous biomaterials, Mater. Des., vol. 89, pp. 9–20, 2016. DOI: 10.1016/j.matdes.2015.09.052.
  • Z. Zhao, S. To, Z. Zhu, and T. Yin, A theoretical and experimental investigation of cutting forces and spring back behaviour of Ti6Al4V alloy in ultraprecision machining of microgrooves, Int. J. Mech. Sci., vol. 169, pp. 105315, 2020. DOI: 10.1016/j.ijmecsci.2019.105315.
  • Q. Wang, S. Bruschi, A. Ghiotti, and Y. Mu, Modelling of fracture occurrence in Ti6Al4V sheets at elevated temperature accounting for anisotropic behaviour, Int. J. Mech. Sci., vol. 150, pp. 471–483, 2019. DOI: 10.1016/j.ijmecsci.2018.10.045.
  • Standard I, ISO 13314, 2011(E), Mechanical testing of metals - Ductility testing - Compression test for porous and cellular metals. Ref Number ISO 13314 2011;1–7.
  • M. Zhao, D.Z. Zhang, F. Liu, Z. Li, Z. Ma, and Z. Ren, Mechanical and energy absorption characteristics of additively manufactured functionally graded sheet lattice structures with minimal surfaces, Int. J. Mech. Sci., vol. 167, pp. 105262, 2020. DOI: 10.1016/j.ijmecsci.2019.105262.
  • G. Johnson and W.H. Cook, A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, Proceedings of the 7th International Symposium on Ballistics, Hague (Netherlands), pp. 541–547, 1983.
  • W.S. Lee and C.F. Lin, High-temperature deformation behavior of Ti6Al4v alloy evaluated by high strain-rate compression tests, J. Mater. Process. Technol., vol. 75, no. 13, pp. 127–136, 1998. DOI: 10.1016/S0924-0136(97)00302-6.
  • N. Jin, Z. Yan, Y. Wang, H. Cheng, and H. Zhang, Effects of heat treatment on microstructure and mechanical properties of selective laser melted Ti-6Al-4V lattice materials, Int J Mech Sci., vol. 190, pp. 106042, 2021. DOI: 10.1016/j.ijmecsci.2020.106042.
  • M. Zhao, F. Liu, G. Fu, D.Z. Zhang, T. Zhang, and H. Zhou, Improved mechanical properties and energy absorption of BCC lattice structures with triply periodic minimal surfaces fabricated by SLM, Materials, vol. 11, no. 12, pp. 2411, 2018. DOI: 10.3390/ma11122411.
  • F. Liu, D.Z. Zhang, P. Zhang, M. Zhao, and S. Jafar, Mechanical properties of optimized diamond lattice structure for bone scaffolds fabricated via selective laser melting, Materials, vol. 11, no. 3, pp. 374, 2018. DOI: 10.3390/ma11030374.
  • D. Mahmoud, K.S. Al-Rubaie, and M.A. Elbestawi, The influence of selective laser melting defects on the fatigue properties of Ti6Al4V porosity graded gyroids for bone implants, Int. J. Mech. Sci., vol. 193, pp. 106180, 2021. DOI: 10.1016/j.ijmecsci.2020.106180.
  • C. Han, Y. Li, Q. Wang, S. Wen, Q. Wei, C. Yan, L. Hao, J. Liu, and Y. Shi, Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants, J. Mech. Behav. Biomed. Mater., vol. 80, pp. 119–127, 2018. DOI: 10.1016/j.jmbbm.2018.01.013.
  • M. Afshar, A. Pourkamali Anaraki, and H. Montazerian, Compressive characteristics of radially graded porosity scaffolds architectured with minimal surfaces, Mater. Sci. Eng. C Mater. Biol. Appl., vol. 92, pp. 254–267, 2018. DOI: 10.1016/j.msec.2018.06.051.
  • D. Qi, H. Yu, M. Liu, H. Huang, S. Xu, Y. Xia, G. Qian, and W. Wu, Mechanical behaviors of SLM additive manufactured octet-truss and truncated-octahedron lattice structures with uniform and taper beams, Int. J. Mech. Sci., vol. 163, pp. 105091, 2019. DOI: 10.1016/j.ijmecsci.2019.105091.
  • C. Yan, L. Hao, A. Hussein, and P. Young, Ti-6Al-4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting, J. Mech. Behav. Biomed. Mater., vol. 51, pp. 61–73, 2015. DOI: 10.1016/j.jmbbm.2015.06.024.
  • L. Yang, R. Mertens, M. Ferrucci, C. Yan, Y. Shi, and S. Yang, Continuous graded Gyroid cellular structures fabricated by selective laser melting: Design, manufacturing and mechanical properties, Mater. Des., vol. 162, pp. 394–404, 2019. DOI: 10.1016/j.matdes.2018.12.007.
  • S. Yu, J. Sun, and J. Bai, Investigation of functionally graded TPMS structures fabricated by additive manufacturing, Mater. Des., vol. 182, pp. 108021, 2019. DOI: 10.1016/j.matdes.2019.108021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.