401
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Effect of enhanced coating layer on the bandgap characteristics and response of metaconcrete

, ORCID Icon, ORCID Icon &
Pages 175-188 | Received 10 Aug 2021, Accepted 23 Nov 2021, Published online: 15 Dec 2021

References

  • A.A. Delouei, A. Emamian, H. Sajjadi, M. Atashafrooz, Y. Li, L. Wang, D. Jing, and G. Xie, A Comprehensive Review on Multi-Dimensional Heat Conduction of Multi-Layer and Composite Structures: Analytical Solutions, J. Therm. Sci., vol. 30, no. 6, pp. 1875–1907, 2021. DOI: 10.1007/s11630-021-1517-1.
  • A.A. Delouei, A. Emamian, S. Karimnejad, H. Sajjadi, and A. Tarokh, On 2D asymmetric heat conduction in functionally graded cylindrical segments: A general exact solution, Int. J. Heat Mass Transf., vol. 143, pp. 118515, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.118515.
  • A.A. Delouei, A. Emaminan, S. Karimnejad, and H. Sajjadi, A closed-form solution for axisymmetric conduction in a finite functionally graded cylinder, Int. Commun. Heat Mass Transfer, vol. 108, pp. 104280, 2019. DOI: 10.1016/j.icheatmasstransfer.2019.104280.
  • Y.H. Zhou, P.J. Wei, Y.Q. Li, and Q.H. Tang, Continuum model of acoustic metamaterials with diatomic crystal lattice, Mech. Adv. Mater. Struct., vol. 24, no. 13, pp. 1059–1073, 2017. DOI: 10.1080/15376494.2016.1205685.
  • Z.Y. Lin, Z.J. Wu, G.P. Zou, F.M. Li, C.Z. Zhang, A.J. Sun, and Q. Du, Band-gap characteristics of elastic metamaterial plate with axial rod core by the finite element and spectral element hybrid method, Lech. Adv. Mater. Struct., pp. 1–18, 2021. DOI: 10.1080/15376494.2020.1863531.
  • Y.T. Su, X. Wu, and J. Shi, A novel 3D printable multimaterial auxetic metamaterial with reinforced structure: Improved stiffness and retained auxetic behavior, Mech. Adv. Mater. Struct., pp. 1–11, 2020. DOI: 10.1080/15376494.2020.1774690.
  • X. Zhang and Z. Liu, Negative refraction of acoustic waves in two-dimensional phononic crystals, Appl. Phys. Lett., vol. 85, no. 2, pp. 341–343, 2004. DOI: 10.1063/1.1772854.
  • N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun, and X. Zhang, Ultrasonic metamaterials with negative modulusmodulus, Nat. Mater., vol. 5, no. 6, pp. 452–456, 2006. DOI: 10.1038/nmat1644.
  • Z.Y. Liu, X.X. Zhang, Y.W. Mao, Y. Zhu, Z.Y. Yang, C.T. Chan, and P. Sheng, Locally resonant sonic materials, Science, vol. 289, no. 5485, pp. 1734–1736, 2000. DOI: 10.1126/science.289.5485.1734.
  • S.J. Mitchell, A. Pandolfi, and M. Ortiz, Metaconcrete: Designed aggregates to enhance dynamic performance, J. Mech. Phys. Solids, vol. 65, pp. 69–81, 2014. DOI: 10.1016/j.jmps.2014.01.003.
  • H. Huang, C. Sun, and G. Huang, On the negative effective mass density in acoustic metamaterials, Int. J. Eng. Sci., vol. 47, no. 4, pp. 610–617, 2009. DOI: 10.1016/j.ijengsci.2008.12.007.
  • Y. Shi, J. Wang, and J. Cui, Experimental studies on fragments of reinforced concrete slabs under close-in explosions, Int. J. Impact Eng., vol. 144, pp. 103630, 2020. DOI: 10.1016/j.ijimpeng.2020.103630.
  • Z.Y. Liu, C.T. Chan, and P. Sheng, Three-component elastic wave band-gap material, Phys. Rev. B, vol. 65, no. 16, pp. 165116, 2002. DOI: 10.1103/PhysRevB.65.165116.
  • M.I. Hussein, M.J. Leamy, and M. Ruzzene, Dynamics of phononic materials and structures: Historical origins, recent progress, and future outlook, Appl. Mech. Rev., vol. 66, no. 4, pp. 040802, 2014. DOI: 10.1115/1.4026911.
  • J.K. Huang and Z.F. Shi, Application of periodic theory to rows of piles for horizontal vibration attenuation, Int. J. Geomech., vol. 13, no. 2, pp. 132–142, 2013. DOI: 10.1061/(ASCE)GM.1943-5622.0000193.
  • Z.Y. Liu, C.T. Chan, and P. Sheng, Analytic model of phononic crystals with local resonances, Phys. Rev. B, vol. 71, no. 1, pp. 014103, 2005. DOI: 10.1103/PhysRevB.71.014103.
  • J.C. Hsu and T.T. Wu, Lamb waves in binary locally resonant phononic plates with two-dimensional lattices, Appl. Phys. Lett., vol. 90, no. 20, pp. 201904, 2007. DOI: 10.1063/1.2739369.
  • Z.B. Cheng, Z.F. Shi, Y.L. Mo, and H.J. Xiang, Locally resonant periodic structures with low-frequency band gaps, J. Appl. Phys., vol. 114, no. 3, pp. 033532, 2013. DOI: 10.1063/1.4816052.
  • S.J. Mitchell, A. Pandolfi, and M. Ortiz, Investigation of elastic wave transmission in a metaconcrete slab, Mech. Mater., vol. 91, pp. 295–303, 2015. DOI: 10.1016/j.mechmat.2015.08.004.
  • S.J. Mitchell, A. Pandolfi, and M. Ortiz, Effect of brittle fracture in a metaconcrete slab under shock loading, J. Eng. Mech., vol. 142, no. 4, pp. 04016010, 2016. DOI: 10.1061/(ASCE)EM.1943-7889.0001034.
  • C. Xu, W.S. Chen, and H. Hao, The influence of design parameters of engineered aggregate in metaconcrete on bandgap region, J. Mech. Phys. Solids, vol. 139, pp. 103929, 2020. DOI: 10.1016/j.jmps.2020.103929.
  • H.X. Jin, W.S. Chen, H. Hao, and Y.F. Hao, Numerical study on impact resistance of metaconcrete (in Chinese), Sci. China (Phys. Mech. Astronomy), vol. 50, no. 2, pp. 49, 2019.
  • H.X. Jin, W.S. Chen, H. Hao, and Y.F. Hao, Numerical study on impact resistance of metaconcrete (in Chinese), Sci. China (Phys. Mech. Astronomy), pp. 49, 2019.
  • H.X. Jin, H. Hao, W.S. Chen, and C. Xu, Spall behaviors of metaconcrete: 3D meso-scale modelling, Int. J. Str. Stab. Dyn., vol. 21, no. 09, pp. 2150121, 2021. DOI: 10.1142/S0219455421501212.
  • G. Chen, Y.F. Hao, and H. Hao, 3D meso-scale modelling of concrete material in spall tests, Mater. Struct., vol. 48, no. 6, pp. 1887–1899, 2015. DOI: 10.1617/s11527-014-0281-z.
  • H.J. Wu, Q.M. Zhang, F.L. Huang, and Q.K. Jin, Experimental and numerical investigation on the dynamic tensile strength of concrete, Int. J. Impact Eng., vol. 32, no. 14, pp. 605–617, 2005. DOI: 10.1016/j.ijimpeng.2005.05.008.
  • P.B. Xu, H. Xu, and H.M. Wen, 3D meso-mechanical modeling of concrete spall tests, Int. J. Impact Eng., vol. 97, pp. 46–56, 2016. DOI: 10.1016/j.ijimpeng.2016.06.005.
  • L. Zhang, S.S. Hu, D.X. Chen, Z.Q. Yu, and F. Liu, An experimental technique for spalling of concrete, Exp. Mech., vol. 49, no. 4, pp. 523–532, 2009. DOI: 10.1007/s11340-008-9159-8.
  • A. Brara, F. Camborde, J.R. Klepaczko, and C. Mariotti, Experimental and numerical study of concrete at high strain rates in tension, Mech. Mater., vol. 33, no. 1, pp. 33–45, 2001. DOI: 10.1016/S0167-6636(00)00035-1.
  • P. Wriggers and S. O. Moftah, Mesoscale models for concrete: Homogenisation and damage behaviour, Finite Elem. Anal. Des., vol. 42, no. 7, pp. 623–636, 2006. DOI: 10.1016/j.finel.2005.11.008.
  • Y.F. Hao and H. Hao, Numerical evaluation of the influence of aggregates on concrete compressive strength at high strain rate, Int. J. Prot. Struct., vol. 2, no. 2, pp. 177–206, 2011. DOI: 10.1260/2041-4196.2.2.177.
  • C. DeArmitt, Magnetite. In: S. Palsule (ed.), Polymers and Polymeric Composites: A Reference Series. Springer, Berlin, Heidelberg, 2016.
  • L.J. Malvar, J.E. Crawford, J.W. Wesevich, and D. Simons, A plasticity concrete material model for DYNA3D, Int. J. Impact Eng., vol. 19, no. 910, pp. 847–873, 1997. DOI: 10.1016/S0734-743X(97)00023-7.
  • Q. Su, H. Wu, H.S. Sun, and Q. Fang, Experimental and numerical studies on dynamic behavior of reinforced UHPC panel under medium-range explosions, Int. J. Impact Eng., vol. 148, pp. 103761, 2021. DOI: 10.1016/j.ijimpeng.2020.103761.
  • Y.F. Hao, H. Hao, and X.H. Zhang, Numerical analysis of concrete material properties at high strain rate under direct tension, Int. J. Impact Eng., vol. 39, no. 1, pp. 51–62, 2012. DOI: 10.1016/j.ijimpeng.2011.08.006.
  • L. Malvar and J. Crawford, Dynamic increase factors for concrete. In: Twenty-Eighth DDESB Seminar, Orlando, Florida, 1998.
  • Y.F. Hao and H. Hao, Numerical Investigation of the dynamic compressive behaviour of rock materials at high strain rate, Rock Mech. Rock Eng., vol. 46, no. 2, pp. 373–388, 2013. DOI: 10.1007/s00603-012-0268-4.
  • G.M. Ren, H. Wu, Q. Fang, and J.Z. Liu, Effects of steel fiber content and type on dynamic compressive mechanical properties of UHPCC, Constr. Build. Mater., vol. 163, pp. 826–839, 2018. DOI: 10.1016/j.conbuildmat.2017.12.184.
  • H. Wu, G.M. Ren, Q. Fang, and J.Z. Liu, Effects of steel fiber content and type on dynamic tensile mechanical properties of UHPCC, Constr. Build. Mater., vol. 173, pp. 251–261, 2018. DOI: 10.1016/j.conbuildmat.2018.04.040.
  • W. Zhang and B. Xue, Elastic modulus adjustable polyurethane composition, scaffold composite and preparation method thereof, WO2017054433A1, in, China, 2017.
  • L. Wang, Foundations of Stress Waves, National Defense Industry Press (in Chinese), Beijing, 1985.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.