323
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Peltier and Seebeck effects on a nonlocal couple stress double porous thermoelastic diffusive material under memory-dependent Moore-Gibson-Thompson theory

, ORCID Icon &
Pages 449-472 | Received 23 Oct 2021, Accepted 08 Dec 2021, Published online: 29 Dec 2021

References

  • M. A. Biot, Thermoelasticity and irreversible thermodynamics, J. Appl. Phys., vol. 27, no. 3, pp. 240–253, 1956. DOI: 10.1063/1.1722351.
  • H. W. Lord, and Y. Shulman, A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solids., vol. 15, no. 5, pp. 299–309, 1967. DOI: 10.1016/0022-5096(67)90024-5.
  • A. E. Green, and K. A. Lindsay, Thermoelasticity, J. Elasticity., vol. 2, no. 1, pp. 1–7, 1972. DOI: 10.1007/BF00045689.
  • A. E. Green, and P. M. Naghdi, A re-examination of the basic postulates of thermomechanics, Proc. Roy. Soc. Lond. A Math. Phys. Sci., vol. 432, no. 1885, pp. 171–194, 1991.
  • A. Green, and P. Naghdi, On undamped heat waves in an elastic solid, J. Therm. Stress., vol. 15, no. 2, pp. 253–264, 1992. DOI: 10.1080/01495739208946136.
  • A. Green, and P. Naghdi, Thermoelasticity without energy dissipation, J. Elasticity., vol. 31, no. 3, pp. 189–208, 1993. DOI: 10.1007/BF00044969.
  • D. Y. Tzou, A unified field approach for heat conduction from macro-to micro-scales, 1995.
  • D. Chandrasekharaiah, Hyperbolic thermoelasticity: a review of recent literature, 1998.
  • S. R. Choudhuri, On a thermoelastic three-phase-lag model, J. Therm. Stress., vol. 30, no. 3, pp. 231–238, 2007. DOI: 10.1080/01495730601130919.
  • A. E. Abouelregal, Modified fractional thermoelasticity model with multi-relaxation times of higher order: application to spherical cavity exposed to a harmonic varying heat, Wave Random Complex Medium., vol. 31, no. 5, pp. 812–832, 2021. DOI: 10.1080/17455030.2019.1628320.
  • R. Quintanilla, Moore–Gibson–Thompson thermoelasticity, Math. Mech. Solid., vol. 24, no. 12, pp. 4020–4031, 2019. DOI: 10.1177/1081286519862007.
  • M. Conti, V. Pata, and R. Quintanilla, Thermoelasticity of Moore–Gibson–Thompson type with history dependence in the temperature, Asympt. Anal., vol. 120, no. 1–2, pp. 1–21, 2020. DOI: 10.3233/ASY-191576.
  • A. E. Abouelregal, I. E. Ahmed, M. E. Nasr, K. M. Khalil, A. Zakria, F. A. Mohammed, Thermoelastic processes by a continuous heat source line in an infinite solid via Moore–Gibson–Thompson thermoelasticity, Materials., vol. 13, no. 19, pp. 4463, 2020. DOI: 10.3390/ma13194463.
  • N. Bazarra, J. R. Fernández, and R. Quintanilla, Analysis of a Moore–Gibson–Thompson thermoelastic problem, J. Comput. Appl. Math., vol. 382, pp. 113058, 2021. DOI: 10.1016/j.cam.2020.113058.
  • A. E. Abouelregal, H. Mohammad-Sedighi, A. H. Shirazi, M. Malikan, V. A. Eremeyev, Computational analysis of an infinite magneto-thermoelastic solid periodically dispersed with varying heat flow based on non-local Moore–Gibson–Thompson approach, Continuum Mech. Thermodyn., pp. 1–19, 2021. DOI: 10.1007/s00161-021-00998-1.
  • J. G. Guo, and Y. P. Zhao, The size-dependent elastic properties of nanofilms with surface effects, J. Appl. Phys., vol. 98, no. 7, pp. 074306, 2005. DOI: 10.1063/1.2071453.
  • W. Nowacki, et al., Dynamic problems of thermodiffusion in elastic solids, 1974.
  • H. H. Sherief, F. A. Hamza, and H. A. Saleh, The theory of generalized thermoelastic diffusion, Int. J. Eng. Sci., vol. 42, no. 5–6, pp. 591–608, 2004. DOI: 10.1016/j.ijengsci.2003.05.001.
  • H. H. Sherief, and H. A. Saleh, A half-space problem in the theory of generalized thermoelastic diffusion, Int. J. Solids Struct., vol. 42, no. 15, pp. 4484–4493, 2005. DOI: 10.1016/j.ijsolstr.2005.01.001.
  • M. Aouadi, A problem for an infinite elastic body with a spherical cavity in the theory of generalized thermoelastic diffusion, Int. J. Solids Struct., vol. 44, no. 17, pp. 5711–5722, 2007. DOI: 10.1016/j.ijsolstr.2007.01.019.
  • B. Singh, On theory of generalized thermoelastic solids with voids and diffusion, Eur. J. Mech.-A/Solid., vol. 30, no. 6, pp. 976–982, 2011. DOI: 10.1016/j.euromechsol.2011.06.007.
  • S. Abo-Dahab, A. Abd-Alla, and A. Kilany, Effects of rotation and gravity on an electro-magneto-thermoelastic medium with diffusion and voids by using the Lord–Shulman and dual-phase-lag models, Appl. Math. Mech-Engl. Ed., vol. 40, no. 8, pp. 1135–1154, 2019. DOI: 10.1007/s10483-019-2504-6.
  • S. Deswal, S. Kumar, and K. Jain, Plane wave propagation in a fiber-reinforced diffusive magneto-thermoelastic half space with two-temperature, Wave Random Complex Medium., pp. 1–23, 2020. DOI: 10.1080/17455030.2020.1758832.
  • A. E. Abouelregal, M. A. Elhagary, A. Soleiman, et al., Generalized thermoelastic-diffusion model with higher-order fractional time-derivatives and four-phase-lags, Mech. Based Des. Struct. Mach., pp. 1–18, 2020. DOI: 10.1080/15397734.2020.1730189.
  • M. Caputo, Linear models of dissipation whose q is almost frequency independent—II, Geophys. J. Int., vol. 13, no. 5, pp. 529–539, 1967. DOI: 10.1111/j.1365-246X.1967.tb02303.x.
  • K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, Springer Science & Business Media, Berlin, Heidelberg, 2010.
  • M. Caputo, and M. Fabrizio, A new definition of fractional derivative without singular Kernel, Progr Fract Differ Appl., vol. 1, no. 2, pp. 1–13, 2015.
  • J. L. Wang, and H. F. Li, Surpassing the fractional derivative: Concept of the memory-dependent derivative, Comput. Math. Appl., vol. 62, no. 3, pp. 1562–1567, 2011. DOI: 10.1016/j.camwa.2011.04.028.
  • Y. Li, and T. He, A generalized thermoelastic diffusion problem with memory-dependent derivative, Math. Mech. Solid., vol. 24, no. 5, pp. 1438–1462, 2019. DOI: 10.1177/1081286518797988.
  • Y. J. Yu, W. Hu, and X. G. Tian, A novel generalized thermoelasticity model based on memory-dependent derivative, Int. J. Eng. Sci., vol. 81, pp. 123–134, 2014. DOI: 10.1016/j.ijengsci.2014.04.014.
  • M. A. Ezzat, A. S. El-Karamany, and A. A. El-Bary, Generalized thermoelasticity with memory-dependent derivatives involving two temperatures, Mech. Adv. Mater. Struct., vol. 23, no. 5, pp. 545–553, 2016. DOI: 10.1080/15376494.2015.1007189.
  • K. Lotfy, A. El-Bary, and N. Sarkar, Memory-dependent derivatives (MDD) of magneto-thermal-elastic waves excited by laser pulses for two-temperature theory, Waves Random Complex Medium., pp. 1–20, 2020. DOI: 10.1080/17455030.2020.1847360.
  • M. I. Othman, and S. Mondal, Memory-dependent derivative effect on 2D problem of generalized thermoelastic rotating medium with Lord–Shulman model, Indian J. Phys., vol. 94, no. 8, pp. 1169–1181, 2020. DOI: 10.1007/s12648-019-01548-x.
  • W. Peng, and T. He, Investigation on the generalized thermoelastic-diffusive problem with variable properties in three different memory-dependent effect theories, Waves Random Complex Medium., pp. 1–20, 2020. DOI: 10.1080/17455030.2020.1857462.
  • A. Sur, Non-local memory-dependent heat conduction in a magneto-thermoelastic problem, Waves Random Complex Medium., pp. 1–21, 2020. DOI: 10.1080/17455030.2020.1770369.
  • D. Chandrasekharaiah, K. Srinath, and L. Debnath, Magneto-thermo-elastic disturbances with thermal relaxation in a solid due to heat sources, Comput. Math. Appl., vol. 15, no. 6-8, pp. 483–490, 1988. DOI: 10.1016/0898-1221(88)90275-1.
  • M. A. Ezzat, M. I. Othman, and A. A. Smaan, State space approach to two-dimensional electromagneto–thermoelastic problem with two relaxation times, Int. J. Eng. Sci., vol. 39, no. 12, pp. 1383–1404, 2001. DOI: 10.1016/S0020-7225(00)00095-1.
  • M. N. Allam, K. A. Elsibai, and A. E. Abouelregal, Electromagneto-thermoelastic problem in a thick plate using Green and Naghdi theory, Int. J. Eng. Sci., vol. 47, no. 5-6, pp. 680–690, 2009. DOI: 10.1016/j.ijengsci.2008.10.013.
  • M. A. Ezzat, M. Zakaria, and A. El-Bary, Two-temperature theory in thermo-electric viscoelastic material subjected to modified Ohm’s and Fourier’s laws, Mech. Adv. Mater. Struct., vol. 19, no. 6, pp. 453–464, 2012. DOI: 10.1080/15376494.2010.550081.
  • R. Tiwari, and S. Mukhopadhyay, On electromagneto-thermoelastic plane waves under Green–Naghdi theory of thermoelasticity-II, J. Therm. Stress., vol. 40, no. 8, pp. 1040–1062, 2017. DOI: 10.1080/01495739.2017.1307094.
  • A. C. Eringen, Theory of nonlocal thermoelasticity, Int. J. Eng. Sci., vol. 12, no. 12, pp. 1063–1077, 1974. DOI: 10.1016/0020-7225(74)90033-0.
  • A. Eringen, Memory dependent nonlocal elastic solids, Letter Appl. Eng. Sci., vol. 2, pp. 145–159, 1974.
  • A. C. Eringen, Plane waves in nonlocal micropolar elasticity, Int. J. Eng. Sci., vol. 22, no. 8–10, pp. 1113–1121, 1984. DOI: 10.1016/0020-7225(84)90112-5.
  • B. Altan, Uniqueness in the linear theory of nonlocal elasticity, Bull Tech Univ Istanb., vol. 37, pp. 373–385, 1984.
  • B. Cracium, On nonlocal thermoelasticity, Am. St Univ., vol. 5, pp. 29–36, 1996.
  • N. Challamel, C. Grazide, V. Picandet, et al., A nonlocal Fourier’s law and its application to the heat conduction of one-dimensional and two-dimensional thermal lattices, Comptes Rendus Mécanique., vol. 344, no. 6, pp. 388–401, 2016. DOI: 10.1016/j.crme.2016.01.001.
  • M. Bachher, and N. Sarkar, Nonlocal theory of thermoelastic materials with voids and fractional derivative heat transfer, Waves Random Complex Medium., vol. 29, no. 4, pp. 595–613, 2019. DOI: 10.1080/17455030.2018.1457230.
  • S. Mondal, N. Sarkar, and N. Sarkar, Waves in dual-phase-lag thermoelastic materials with voids based on Eringen’s nonlocal elasticity, J. Therm. Stresses ., vol. 42, no. 8, pp. 1035–1050, 2019. DOI: 10.1080/01495739.2019.1591249.
  • A. E. Abouelregal, A novel model of nonlocal thermoelasticity with time derivatives of higher order, Math. Meth. Appl. Sci., vol. 43, no. 11, pp. 6746–6760, 2020. DOI: 10.1002/mma.6416.
  • A. Farajpour, A. Rastgoo, and M. Farajpour, Nonlinear buckling analysis of magneto-electro-elastic CNT-MT hybrid nanoshells based on the nonlocal continuum mechanics, Compos. Struct., vol. 180, pp. 179–191, 2017. DOI: 10.1016/j.compstruct.2017.07.100.
  • M. Farajpour, A. Shahidi, A. Hadi, A. Farajpour, Influence of initial edge displacement on the nonlinear vibration, electrical and magnetic instabilities of magneto-electro-elastic nanofilms, Mech. Adv. Mater. Struct., vol. 26, no. 17, pp. 1469–1481, 2019. DOI: 10.1080/15376494.2018.1432820.
  • A. Farajpour, K. K. Żur, J. Kim, J. N. Reddy, Nonlinear frequency behaviour of magneto-electromechanical mass nanosensors using vibrating mee nanoplates with multiple nanoparticles, Compos. Struct. ., vol. 260, pp. 113458, 2021. DOI: 10.1016/j.compstruct.2020.113458.
  • F. S. Bayones, S. Mondal, S. M. Abo-Dahab, et al., Effect of moving heat source on a magneto-thermoelastic rod in the context of Eringen’s nonlocal theory under three-phase lag with a memory dependent derivative, Mech. Based Des. Struct. Mach., pp. 1–17, 2021. DOI: 10.1080/15397734.2021.1901735.
  • S. Gupta, S. Das, and R. Dutta, Nonlocal stress analysis of an irregular fgfpm structure imperfectly bonded to fiber-reinforced substrate subjected to moving load, Soil Dyn. Earthquake Eng., vol. 147, pp. 106744, 2021. DOI: 10.1016/j.soildyn.2021.106744.
  • S. Gupta, R. Dutta, and S. Das, Analytical approach to determine the impact of line source on sh-wave propagation in an anisotropic poro-viscoelastic layered structure in the context of Eringen’s nonlocal elasticity theory, Soil Dyn. Earthquake Eng., vol. 151, pp. 106987, 2021. DOI: 10.1016/j.soildyn.2021.106987.
  • J. G. Berryman, and H. F. Wang, Elastic wave propagation and attenuation in a double-porosity dual-permeability medium, Int. J. Rock Mech. Min. Sci., vol. 37, no. 1-2, pp. 63–78, 2000. DOI: 10.1016/S1365-1609(99)00092-1.
  • N. Khalili, and A. Selvadurai, A fully coupled constitutive model for thermo-hydro-mechanical analysis in elastic media with double porosity, Geophys. Res. Lett., vol. 30, no. 24, 2003. DOI: 10.1029/2003GL018838.
  • S. C. Cowin, Bone poroelasticity, J. Biomech., vol. 32, no. 3, pp. 217–238, 1999. DOI: 10.1016/s0021-9290(98)00161-4.
  • S. C. Cowin, and J. W. Nunziato, Linear elastic materials with voids, J. Elasticity., vol. 13, no. 2, pp. 125–147, 1983. DOI: 10.1007/BF00041230.
  • J. W. Nunziato, and S. C. Cowin, A nonlinear theory of elastic materials with voids, Arch. Rational Mech. Anal., vol. 72, no. 2, pp. 175–201, 1979. DOI: 10.1007/BF00249363.
  • D. Ieşan, A theory of thermoelastic materials with voids, Acta Mech., vol. 60, no. 1–2, pp. 67–89, 1986. DOI: 10.1007/BF01302942.
  • G. I. Barenblatt, I. P. Zheltov, and I. Kochina, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata], J. Appl. Math. Mech., vol. 24, no. 5, pp. 1286–1303, 1960. DOI: 10.1016/0021-8928(60)90107-6.
  • R. Wilson, and E. C. Aifantis, On the theory of consolidation with double porosity, Int. J. Eng. Sci., vol. 20, no. 9, pp. 1009–1035, 1982. DOI: 10.1016/0020-7225(82)90036-2.
  • B. Straughan, Stability and uniqueness in double porosity elasticity, Int. J. Eng. Sci., vol. 65, pp. 1–8, 2013. DOI: 10.1016/j.ijengsci.2013.01.001.
  • M. Svanadze, Plane waves and boundary value problems in the theory of elasticity for solids with double porosity, Acta Appl. Math., vol. 122, no. 1, pp. 461–471, 2012. DOI: 10.1007/s10440-012-9756-5.
  • R. Ellahi, M. Raza, and N. S. Akbar, Study of peristaltic flow of nanofluid with entropy generation in a porous medium, J. Por. Media., vol. 20, no. 5, pp. 461–478, 2017. DOI: 10.1615/JPorMedia.v20.i5.70.
  • S. Gupta, R. Dutta, and S. Das, Love-type wave propagation in an inhomogeneous cracked porous medium loaded by heterogeneous viscous liquid layer, J. Vib. Eng. Technol., vol. 9, no. 3, pp. 433–448, 2021. DOI: 10.1007/s42417-020-00237-y.
  • S. Gupta, S. Das, and R. Dutta, Impact of point source on fissured poroelastic medium: Green’s function approach, EC., vol. 38, no. 4, pp. 1869–1894, 2021. DOI: 10.1108/EC-11-2019-0515.
  • S. Gupta, S. Das, and R. Dutta, Finite difference modeling of shear wave propagation in multilayered fractured porous structures, Arab. J. Geosci., vol. 14, no. 3, pp. 1–19, 2021. DOI: 10.1007/s12517-020-06429-w.
  • S. Gupta, S. Das, and R. Dutta, Case-wise analysis of love-type wave propagation in an irregular fissured porous stratum coated by a sandy layer, Multidiscip. Model. Mater. Struct., vol. 17, no. 6, pp. 1119–1141, 2021. DOI: 10.1108/MMMS-01-2021-0003.
  • D. Ieşan, and R. Quintanilla, On a theory of thermoelastic materials with a double porosity structure, J. Therm. Stress., vol. 37, no. 9, pp. 1017–1036, 2014. DOI: 10.1080/01495739.2014.914776.
  • I. H. El-Sirafy, S. Abo-Dahab, and B. Singh, Effects of voids and rotation on p wave in a thermoelastic half-space under Green–Naghdi theory, Math. Mech. Solid., vol. 17, no. 3, pp. 243–253, 2012. DOI: 10.1177/1081286511408759.
  • S. Abo-Dahab, and B. Singh, Rotational and voids effect on the reflection of p waves from stress-free surface of an elastic half-space under magnetic field and initial stress without energy dissipation, Appl. Math. Model., vol. 37, no. 20-21, pp. 8999–9011, 2013. DOI: 10.1016/j.apm.2013.04.033.
  • M. I. Othman, and M. Marin, Effect of thermal loading due to laser pulse on thermoelastic porous medium under GN theory, Results Phys., vol. 7, pp. 3863–3872, 2017. DOI: 10.1016/j.rinp.2017.10.012.
  • P. Liu, and T. He, Dynamic response of thermoelastic materials with voids subjected to ramp-type heating under three-phase-lag thermoelasticity, Mech. Adv. Mater. Struct., pp. 1–9, 2020. DOI: 10.1080/15376494.2020.1821137.
  • D. Singh, D. Kumar, and S. Tomar, Plane harmonic waves in a thermoelastic solid with double porosity, Math. Mech. Solid., vol. 25, no. 4, pp. 869–886, 2020. DOI: 10.1177/1081286519890053.
  • S. Gupta, S. Das, and R. Dutta, Influence of gravity, magnetic field, and thermal shock on mechanically loaded rotating FGDPTM structure under Green-Naghdi theory, Mech. Based Des. Struct. Mach., pp. 1–29, 2020. DOI: 10.1080/15397734.2020.1853565.
  • W. Voight, Theoretische studien uber die elasticitatsverhaltnisse des krystalle, I, II. Abh Ges Wiss, Gottingen., 1887.
  • E. Cosserat, and F. Cosserat, Théorie des corps déformables. a. hermann et fils. Paris Engl Transl of the Title: Theory of Deformable Bodies, A. Hermann and Sons, Paris, 1909.
  • A. C. Eringen, Theory of micropolar elasticity. In: Microcontinuum Field Theories, Springer, New York, 1999. p. 101–248.
  • R. D. Mindlin, and H. F. Tiersten, Effects of couple-stresses in linear elasticity, Arch. Rational Mech. Anal., vol. 11, pp. 415–448, 1962.
  • A. R. Hadjesfandiari, and G. F. Dargush, Couple stress theory for solids, Int. J. Solids Struct., vol. 48, no. 18, pp. 2496–2510, 2011. DOI: 10.1016/j.ijsolstr.2011.05.002.
  • R. Kumar, S. Devi, and S. Abo-Dahab, Propagation of Rayleigh waves in modified couple stress generalized thermoelastic with a three-phase-lag model, Waves Random Complex Medium., vol. 31, no. 2, pp. 359–371, 2021. DOI: 10.1080/17455030.2019.1588482.
  • A. Ray, and A. K. Singh, Love-type waves in couple-stress stratum imperfectly bonded to an irregular viscous substrate, Acta Mech., vol. 231, no. 1, pp. 101–123, 2020. DOI: 10.1007/s00707-019-02525-5.
  • A. Mandi, S. Kundu, P. Pati, et al., An analytical study on the Rayleigh wave generation in a stratified structure, Appl. Math. Mech-Engl. Ed., vol. 41, no. 7, pp. 1039–1054, 2020. DOI: 10.1007/s10483-020-2625-9.
  • A. E. Abouelregal, and H. M. Sedighi, A new insight into the interaction of thermoelasticity with mass diffusion for a half-space in the context of Moore–Gibson–Thompson thermodiffusion theory, Appl. Phys. A., vol. 127, no. 8, pp. 1–14, 2021. DOI: 10.1007/s00339-021-04725-0.
  • M. Aouadi, A theory of thermoelastic diffusion materials with voids, Z Angew. Math. Phys., vol. 61, no. 2, pp. 357–379, 2010. DOI: 10.1007/s00033-009-0016-0.
  • A. C. Eringen, and J. Wegner, Nonlocal continuum field theories, Appl. Mech. Rev., vol. 56, no. 2, pp. B20–B22, 2003.
  • Y. J. Yu, X. G. Tian, and X. R. Liu, Size-dependent generalized thermoelasticity using Eringen’s nonlocal model, Eur. J. Mech.-A/Solid., vol. 51, pp. 96–106, 2015. DOI: 10.1016/j.euromechsol.2014.12.005.
  • C. Li, T. He, and X. Tian, Nonlocal theory of thermoelastic diffusive materials and its application in structural dynamic thermo-elasto-diffusive responses analysis, Waves Random Complex Medium., pp. 1–30, 2020. DOI: 10.1080/17455030.2020.1767828.
  • S. Kaliski, For the wave equations of thermo-electro–magneto–elasticity. In: Irreversible Aspects of Continuum Mechanics and Transfer of Physical Characteristics in Moving Fluids: Symposia, Vienna, June 22–28, 1966; Springer Science & Business Media, Vienna, 2012. p. 159.
  • A. Gunghas, S. Kumar, D. Sheoran, et al., Thermo-mechanical interactions in a functionally graded elastic material with voids and gravity field, Int. J. Mech. Mater. Des., vol. 16, no. 4, pp. 767–782, 2020. DOI: 10.1007/s10999-020-09501-1.
  • M. I. Othman, M. E. Zidan, and M. I. Hilal, The effect of initial stress on thermoelastic rotating medium with voids due to laser pulse heating with energy dissipation, J. Therm. Stress., vol. 38, no. 8, pp. 835–853, 2015. DOI: 10.1080/01495739.2015.1040316.
  • N. Khalili, Coupling effects in double porosity media with deformable matrix, Geophys. Res. Lett., vol. 30, no. 22, 2003. DOI: 10.1029/2003GL018544.
  • M. A. Ezzat, and E. S. Awad, Micropolar generalized magneto-thermoelasticity with modified Ohm’s and Fourier’s laws, J. Math. Anal. Appl., vol. 353, no. 1, pp. 99–113, 2009. DOI: 10.1016/j.jmaa.2008.11.058.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.