192
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Stress-driven nonlocal model on snapping of doubly hinged shallow arches

ORCID Icon & ORCID Icon
Pages 1223-1233 | Received 28 Apr 2021, Accepted 11 Jan 2022, Published online: 16 Feb 2022

References

  • R. Penna, L. Feo, A. Fortunato, and R. Luciano, Nonlinear free vibrations analysis of geometrically imperfect FG nano-beams based on stress-driven nonlocal elasticity with initial pretension force, Compos. Struct., vol. 255, pp. 112856, 2021. DOI: 10.1016/j.compstruct.2020.112856.
  • S. Sahmani and D.M. Madyira, Nonlocal strain gradient nonlinear primary resonance of micro/nano-beams made of GPL reinforced FG porous nanocomposite materials, Mech. Based Des. Struct. Mach., vol. 49, no. 4, pp. 553–580, 2021. DOI: 10.1080/15397734.2019.1695627.
  • E. Carrera and V.V. Zozulya, Carrera unified formulation (CUF) for the micropolar beams: Analytical solutions, Mech. Adv. Mater. Struct., vol. 28, no. 6, pp. 583–607, 2021. DOI: 10.1080/15376494.2019.1578013.
  • B. Daraei, S. Shojaee, and S. Hamzehei-Javaran, Analysis of stationary and axially moving beams considering functionally graded material using micropolar theory and Carrera unified formulation, Compos. Struct., vol. 271, pp. 114054, 2021. DOI: 10.1016/j.compstruct.2021.114054.
  • M. Fazlali, S.A. Faghidian, M. Asghari, and H.M. Shodja, Nonlinear flexure of Timoshenko–Ehrenfest nano-beams via nonlocal integral elasticity, Eur. Phys. J. Plus., vol. 135, no. 8, pp. 638, 2020. DOI: 10.1140/epjp/s13360-020-00661-9.
  • A.C. Eringen, On differential-equations of nonlocal elasticity and solutions of screw dislocation and surface-waves, J. Appl. Phys., vol. 54, no. 9, pp. 4703–4710, 1983. DOI: 10.1063/1.332803.
  • A.C. Eringen, Vistas of nonlocal continuum physics, Int. J. Eng. Sci., vol. 30, no. 10, pp. 1551–1565, 1992. DOI: 10.1016/0020-7225(92)90165-D.
  • A.C. Eringen, Nonlocal Continuum Field Theories, Springer, New York, 2002. DOI: 10.1007/b97697.
  • J.N. Reddy and S. El-Borgi, Eringen’s nonlocal theories of beams accounting for moderate rotations, Int. J. Eng. Sci., vol. 82, pp. 159–177, 2014. DOI: 10.1016/j.ijengsci.2014.05.006.
  • F.M. Sciarra and R. Barretta, A new nonlocal bending model for Euler–Bernoulli nanobeams, Mech. Res. Commun., vol. 62, pp. 25–30, 2014. DOI: 10.1016/j.mechrescom.2014.08.004.
  • C. Li, A nonlocal analytical approach for torsion of cylindrical nanostructures and the existence of higher-order stress and geometric boundaries, Compos. Struct., vol. 118, pp. 607–621, 2014. DOI: 10.1016/j.compstruct.2014.08.008.
  • N. Challamel, A. Kocsis, and C.M. Wang, Discrete and non-local elastica, Int J Non- Linear Mech., vol. 77, pp. 128–140, 2015. DOI: 10.1016/j.ijnonlinmec.2015.06.012.
  • E. Ghavanloo and S.A. Fazelzadeh, Nonlocal shell model for predicting axisymmetric vibration of spherical shell-like nanostructures, Mech. Adv. Mater. Struct., vol. 22, no. 7, pp. 597–603, 2015. DOI: 10.1080/15376494.2013.828816.
  • M.S. Sari, Free vibration analysis of non-local annular sector Mindlin plates, Int. J. Mech. Sci., vol. 9697, pp. 25–35, 2015. DOI: 10.1016/j.ijmecsci.2015.03.010.
  • J.N. Reddy, Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates, Int. J. Eng. Sci., vol. 48, no. 11, pp. 1507–1518, 2010. DOI: 10.1016/j.ijengsci.2010.09.020.
  • K. Khorshidi and A. Fallah, Buckling analysis of functionally graded rectangular nano-plate based on nonlocal exponential shear deformation theory, Int. J. Mech. Sci., vol. 113, pp. 94–104, 2016. DOI: 10.1016/j.ijmecsci.2016.04.014.
  • F. Ebrahimi, N. Shafiei, M. Kazemi, and S.M.M. Abdollahi, Thermo-mechanical vibration analysis of rotating nonlocal nanoplates applying generalized differential quadrature method, Mech. Adv. Mater. Struct., vol. 24, no. 15, pp. 1257–1273, 2017. DOI: 10.1080/15376494.2016.1227499.
  • C.P. Wu and J.Y. Liou, RMVT-based nonlocal Timoshenko beam theory for stability analysis of embedded single-walled carbon nanotube with various boundary conditions, Int. J. Str. Stab. Dyn., vol. 16, no. 10, pp. 1550068, 2016. DOI: 10.1142/S0219455415500686.
  • M.E. Golmakani and H. Vahabi, Nonlocal buckling analysis of functionally graded annular nanoplates in an elastic medium with various boundary conditions, Microsyst. Technol., vol. 23, no. 8, pp. 3613–3628, 2017. DOI: 10.1007/s00542-016-3210-y.
  • H.B. Khaniki and Sh Hosseini-Hashemi, Dynamic response of biaxially loaded double-layer viscoelastic orthotropic nanoplate system under a moving nanoparticle, Int. J. Eng. Sci., vol. 115, pp. 51–72, 2017. DOI: 10.1016/j.ijengsci.2017.02.005.
  • M. Tuna and M. Kirca, Bending, buckling and free vibration analysis of Euler-Bernoulli nanobeams using Eringen’s nonlocal integral model via finite element method, Compos. Struct., vol. 179, pp. 269–284, 2017. DOI: 10.1016/j.compstruct.2017.07.019.
  • P. Mortazavi, H.R. Mirdamadi, and A.R. Shahidi, Post-buckling, limit point, and bifurcation analyses of shallow nano-arches by generalized displacement control and finite difference considering small-scale effects, Int. J. Str. Stab. Dyn., vol. 18, no. 01, pp. 1850014, 2018. DOI: 10.1142/S0219455418500141.
  • S.S.S. Mirjavadi, B.M. Afshari, M. Khezel, N. Shafiei, S. Rabby, and M. Kordnejad, Nonlinear vibration and buckling of functionally graded porous nanoscaled beams, J. Braz. Soc. Mech. Sci. Eng., vol. 40, no. 7, pp. 352, 2018. DOI: 10.1007/s40430-018-1272-8.
  • M. Tuna, M. Kirca, and P. Trovalusci, Deformation of atomic models and their equivalent continuum counterparts using Eringen’s two-phase local/nonlocal model, Mech. Res. Commun., vol. 97, pp. 26–32, 2019. DOI: 10.1016/j.mechrescom.2019.04.004.
  • M. Tuna and M. Kirca, Unification of Eringen’s nonlocal parameter through an optimization-based approach, Mech. Adv. Mater. Struct., vol. 28, no. 8, pp. 839–848, 2021. DOI: 10.1080/15376494.2019.1601312.
  • K. Shiva, P. Raghu, A. Rajagopal, and J.N. Reddy, Nonlocal buckling analysis of laminated composite plates considering surface stress effects, Compos. Struct., vol. 226, pp. 111216, 2019. DOI: 10.1016/j.compstruct.2017.07.019.
  • D. Shasavari, B. Karami, and M. Janghorban, Size-dependent vibration analysis of laminated composite plates, Adv. Nano Search, vol. 7, no. 5, pp. 337–349, 2019. DOI: 10.12989/anr.2019.7.5.337.
  • A.I. Aria, T. Rabczuk, and M.I. Friswell, A finite element model for the thermo-elastic analysis of functionally graded porous nanobeams, Eur. J. Mech. A/Solids., vol. 77, pp. 103767, 2019. DOI: 10.1016/j.euromechsol.2019.04.002.
  • B. Karami, D. Shahsavari, M. Janghormn, and L. Li, Elastic guided waves in fully-clamped functionally graded carbon nanotube-reinforced composite plates, Mater. Res. Express., vol. 6, no. 9, pp. 0950a9, 2019. DOI: 10.1088/2053-1591/ab3474.
  • M. Arefi, Magneto-electro-mechanical size-dependent vibration analysis of three-layered nanobeam with initial curvature considering thickness stretching, Int. J. Nano Dimens., vol. 10, no. 1, pp. 48–61, 2019.
  • T.B. Nguyen, J.N. Reddy, J. Rungamornrat, J. Lawongkerd, T. Senjuntichai, and V.H. Luong, Nonlinear analysis for bending, buckling and post-buckling of nano-beams with nonlocal and surface energy effects, Int. J. Str. Stab. Dyn., vol. 19, no. 11, pp. 1950130, 2019. DOI: 10.1142/S021945541950130X.
  • C.P. Wu and J.J. Yu, A review of mechanical analyses of rectangular nanobeams and single-, double-, and multi-walled carbon nanotubes using Eringen’s nonlocal elasticity theory, Arch. Appl. Mech., vol. 89, no. 9, pp. 1761–1792, 2019. DOI: 10.1007/s00419-019-01542-z.
  • B. Karami, M. Janghorban, D. Shahsavari, R. Dimitri, and F. Tornabene, Nonlocal buckling analysis of composite curved beams reinforced with functionally graded carbon nanotubes, Molecules, vol. 24, no. 15, pp. 2750, 2019. DOI: 10.3390/molecules24152750.
  • S. Dastjerdi, M. Abbasi, and L. Yazdanparast, A new modified higher-order shear deformation theory for nonlinear analysis of macro- and nano- annular sector plates using the extended Kantorovitch method in conjuction with SAPM, Acta Mech., vol. 228, no. 10, pp. 3381–3401, 2017. DOI: 10.1007/s00707-017-1872-x.
  • W.D. Yang, W.B. Kang, and X. Wang, Thermal and surface effects on the pull-in characteristics of circular nanoplate NEMS actuator based on nonlocal elasticity, Appl. Math. Model., vol. 43, pp. 321–336, 2017. DOI: 10.1016/j.apm.2016.11.023.
  • A. Heydari, Size-dependent damped vibrations and buckling analyses of bidirectional functionally graded solid circular nano-plate with arbitrary thickness variation, Struct. Eng. Mech., vol. 68, no. 2, pp. 171–182, 2018. DOI: 10.12989/sem.2018.68.2.171.
  • E. Allahyari and M. Asgari, Effect of magnetic-thermal field on nonlinear wave propagation of circular nanoplates, J. Electromagn. Waves Appl., vol. 33, no. 17, pp. 2296–2316, 2019. DOI: 10.1080/09205071.2019.1677271.
  • R.F. Yükseler, Local and nonlocal buckling of Mooney-Rivlin rods, Eur. J. Mech. A Solids, vol. 78, pp. 103816, 2019. DOI: 10.1016/j.euromechsol.2019.103816.
  • R.F. Yükseler, Exact nonlocal solutions of circular nanoplates subjected to uniformly distributed loads and nonlocal concentrated forces, J. Braz. Soc. Mech. Sci. Eng., vol. 42, no. 1, pp. 61, 2020. DOI: 10.1007/s40430-019-2144-6.
  • M. Tuna, L. Leonetti, P. Trovalusci, and M. Kirca, Explicit’ and ‘implicit’ non-local continuous descriptions for a plate with circular inclusion in tension, Meccanica, vol. 55, no. 4, pp. 927–944, 2020. DOI: 10.1007/s11012-019-01091-3.
  • A.T. Atacan and R.F. Yükseler, Snap-through instability of slightly curved beams under sinusoidal loading based on nonlocal elasticity theory, Mech. Based Des. Struct. Mach., 2021. DOI: 10.1080/15397734.2021.1901736.
  • G. Romano, R. Barretta, M. Diaco, and F.M. de Sciarra, Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams, Int. J. Mech. Sci., vol. 121, pp. 151–156, 2017. DOI: 10.1016/j.ijmecsci.2016.10.036.
  • G. Romano and R. Barretta, Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams, Compos. Part B, vol. 114, pp. 184–188, 2017. DOI: 10.1016/j.compositesb.2017.01.008.
  • R. Barretta, M. Diaco, L. Feo, R. Luciano, F.M. de Sciarra, and R. Penna, Stress-driven integral elastic theory for torsion of nano-beams, Mech. Res. Commun., vol. 87, pp. 35–41, 2018. DOI: 10.1016/j.mechrescom.2017.11.004.
  • R. Barretta, F.M. De Sciarra, and M.S. Vaccaro, On nonlocal mechanics of curved elastic beams, Int. J. Eng. Sci., vol. 144, pp. 103140, 2019. DOI: 10.1016/j.ijengsci.2019.103140.
  • N. Challamel and C.M. Wang, The small length scale effect for a non-local cantilever beam: A paradox solved, Nanotechnology, vol. 19, no. 34, pp. 345703, 2008. DOI: 10.1088/0957-4484/19/34/345703.
  • J. Fernández-Sáez, R. Zaera, J.A. Loya, and J.N. Reddy, Bending of Euler–Bernoulli beams using Eringen’s integral formulation: A paradox resolved, Int. J. Eng. Sci., vol. 99, pp. 107–116, 2016. DOI: 10.1016/j.ijengsci.2015.10.013.
  • M. Tuna and M. Kirca, Exact solution of Eringen’s nonlocal integral model for bending of Euler-Bernoulli and Timoshenko beams, Int. J. Eng. Sci., vol. 105, pp. 80–92, 2016. DOI: 10.1016/j.ijengsci.2016.05.001.
  • M.F. Oskouie, R. Ansari, and H. Rouhi, Bending analysis of nanoscopic beams based upon the strain-driven and stress-driven integral nonlocal strain gradient theories, J. Braz. Soc. Mech. Sci. Eng., vol. 43, no. 3, pp. 115, 2021. DOI: 10.1007/s40430-020-02782-9.
  • R. Barretta, S.A. Faghidian, and F.M. de Sciarra, Stress-driven nonlocal integral elasticity for axisymmetric nano-plates, Int. J. Eng. Sci., vol. 136, pp. 38–52, 2019. DOI: 10.1016/j.ijengsci.2019.01.003.
  • A. Apuzzo, R. Barretta, R. Luciano, F.M. de Sciarra, and R. Penna, Free vibrations of Bernoulli-Euler nano-beams by the stress-driven nonlocal integral model, Compos. Part B, vol. 123, pp. 105–111, 2017. DOI: 10.1016/j.compositesb.2017.03.057.
  • R. Barretta, M. Canadija, R. Luciano, and F.M. De Sciarra, Stress-driven modeling of nonlocal thermoelastic behavior of nanobeams, Int. J. Eng. Sci., vol. 126, pp. 53–67, 2018. DOI: 10.1016/j.ijengsci.2018.02.012.
  • R. Barretta, S.A. Faghidian, R. Luciano, C.M. Medaglia, and R. Penna, Stress-riven two-phase integral elasticity for torsion of nano-beams, Compos. Part B: Eng., vol. 145, pp. 62–69, 2018. DOI: 10.1016/j.compositesb.2018.02.020.
  • R. Barretta, F. Fabbrocino, R. Luciano, F.M. de Sciarra, and G. Ruta, Buckling loads of nano-beams in stress-driven nonlocal elasticity, Mech. Adv. Mater. Struct., vol. 27, no. 11, pp. 869–875, 2020. DOI: 10.1080/15376494.2018.1501523.
  • R. Barretta, S.A. Faghidian, and R. Luciano, Longitudinal vibrations of nano-rods by stress-driven integral elasticity, Mech. Adv. Mater. Struct., vol. 26, no. 15, pp. 1307–1315, 2019. DOI: 10.1080/15376494.2018.1432806.
  • R. Barretta, R. Luciano, F.M. de Sciarra, and G. Ruta, Stress-driven nonlocal integral model for Timoshenko elastic nano-beams, Eur. J. Mech. A Solids, vol. 72, pp. 275–286, 2018. DOI: 10.1016/j.euromechsol.2018.04.012.
  • H.M. Sedighi, H.M. Ouakad, R. Dimitri, and F. Tornabene, Stress-driven nonlocal elasticity for the instability analysis of fluid-conveying C-BN hybrid-nanotube in a magneto-thermal environment, Phys. Scr., vol. 95, no. 6, pp. 065204, 2020. DOI: 10.1088/1402-4896/ab793f.
  • M. Malikan and V.A. Eremeyev, Free vibration of flexomagnetic nanostructured tubes based on stress-driven nonlocal elasticity. In: H. Altenbach, N. Chinchaladze, R. Kienzler, and W. Müller (eds.), Analysis of Shells, Plates, and Beams, Advanced Structured Materials, vol. 134, pp. 215–226, Switzerland, Springer, 2020. DOI: 10.1007/978-3-030-47491-1_12
  • F.P. Pinnola, M.S. Vaccaro, R. Barretta, and F.M. de Sciarra, Random vibrations of stress-driven nonlocal beams with external damping, Meccanica, vol. 56, no. 6, pp. 1329–1344, 2021. DOI: 10.1007/s11012-020-01181-7.
  • S.A. Faghidian, Flexure mechanics of nonlocal modified gradient nano-beams, J. Comput. Des. Eng., vol. 8, no. 3, pp. 949–959, 2021. DOI: 10.1093/jcde/qwab027.
  • S. Faroughi, A. Rahmani, and M.I. Friswell, On wave propagation in two-dimensional functionally graded porous rotating nano-beams using a general nonlocal higher-order beam model, Appl. Math. Modell., vol. 80, pp. 169–190, 2020. DOI: 10.1016/j.apm.2019.11.040.
  • X. Zhao, W.D. Zhu, and Y.H. Li, Analytical solutions of nonlocal coupled thermoelastic forced vibrations of micro-/nano-beams by means of Green's Functions, J. Sound Vib., vol. 481, pp. 115407, 2020. DOI: 10.1016/j.jsv.2020.115407.
  • F.P. Pinnola, S.A. Faghidian, R. Barretta, and F.M. de Sciarra, Variationally consistent dynamics of nonlocal gradient elastic beams, Int. J. Eng. Sci., vol. 149, pp. 103220, 2020. DOI: 10.1016/j.ijengsci.2020.103220.
  • E.A. Nia and H.E. Toussi, A survey of stability in curved-beam/curved-electrode MEMS element, J. Braz. Soc. Mech. Sci. Eng., vol. 43, pp. 420, 2021. DOI: 10.1007/s40430-021-03140-z.
  • A. Hadi, M.Z. Nejad, A. Rastgoo, and M. Hosseini, Buckling analysis of FGM Euler-Bernoulli nano-beams with 3D-varying properties based on consistent couple-stress theory, Steel Compos. Struct., vol. 26, no. 6, pp. 663–672, 2018. DOI: 10.12989/scs.2018.26.6.663.
  • I. Kaur, P. Lata, and K. Singh, Study of frequency shift and thermoelastic damping in transversely isotropic nano-beam with GN III theory and two temperature, Arch. Appl. Mech., vol. 91, no. 4, pp. 1697–1711, 2021. DOI: 10.1007/s00419-020-01848-3.
  • M.S. Vaccaro, F.P. Pinnola, F.M. de Sciarra, and R. Barretta, Limit behaviour of Eringen's two-phase elastic beams, Eur. J. Mech. A Solids, vol. 89, pp. 104315, 2021. DOI: 10.1016/j.euromechsol.2021.104315.
  • R. Penna, L. Feo, and G. Lovisi, Hygro-thermal bending behavior of porous FG nano-beams via local/nonlocal strain and stress gradient theories of elasticity, Compos. Struct., vol. 263, pp. 113627, 2021. DOI: 10.1016/j.compstruct.2021.113627.
  • S. Adhikari, D. Karlicic, and X. Liu, Dynamic stiffness of nonlocal damped nano-beams on elastic foundation, Eur. J. Mech./A Solids, vol. 86, pp. 104144, 2021. DOI: 10.1016/j.euromechsol.2020.104144.
  • R. Luciano, A. Caporale, H. Darban, and C. Bartolomeo, Variational approaches for bending and buckling of non-local stress-driven Timoshenko nano-beams for smart materials, Mech. Res. Commun., vol. 103, pp. 103470, 2020. DOI: 10.1016/j.mechrescom.2019.103470.
  • A. Caporale, H. Darban, and R. Luciano, Exact closed form solutions for nonlocal beams with loading discontinuities, Mech. Adv. Mater. Struct., 2020. DOI: 10.1080/15376494.2020.1787565.
  • A.Z. Hajjaj, N. Alcheikh, and M.I. Younis, The static and dynamic behavior of MEMS arch resonators near veering and the impact of initial shapes, Int. J. Non. Linear Mech., vol. 95, pp. 277–286, 2017. DOI: 10.1016/j.ijnonlinmec.2017.07.002.
  • A. Rajaei, A. Vahidi-Moghaddam, M. Ayati, and M. Baghani, Integral sliding mode control for nonlinear damped model of arch microbeams, Microsyst. Technol., vol. 25, no. 1, pp. 57–68, 2019. DOI: 10.1007/s00542-018-3931-1.
  • N.J. Hoff and V. G. Bruce, Dynamic analysis of the buckling of laterally loaded flat arches, J. Math. Phys., vol. 32, no. 14, pp. 276–288, 1953. DOI: 10.1002/sapm1953321276.
  • Y. Chandra, I. Stanciulescu, L.N. Virgin, T.G. Eason, and S.M. Spottswood, A numerical investigation of snap-through in a shallow arch-like model, J. Sound Vib., vol. 332, no. 10, pp. 2532–2548, 2013. DOI: 10.1016/j.jsv.2012.12.019.
  • L. Medina, R. Gilat, B. Ilic, and S. Krylov, Experimental investigation of the snap-through buckling of electrostatically actuated initially curved pre-stressed micro beams, Sens. Actuators, A, vol. 220, pp. 323–332, 2014. DOI: 10.1016/j.sna.2014.10.016.
  • J. Beharic, T.M. Lucas, and C.K. Harnett, Analysis of a compressed bistable buckled beam on a flexible support, J. Appl. Mech.-Tran. ASME, vol. 81, no. 8, pp. 081011, 2014. DOI: 10.1115/1.4027463.
  • A.A. Atai, M. Panahiazar, and R. Eghtefari, Limit load analysis of a spring-supported shallow arch of variable thickness given by a power-law, exponential, or logarithmic formula, Mech. Solids, vol. 50, no. 6, pp. 676–686, 2015. DOI: 10.3103/S0025654415060084.
  • X. Chen and S.A. Meguid, Snap-through buckling of initially curved microbeam subject to an electrostatic force, Proc. Math. Phys. Eng. Sci., vol. 471, no. 2177, pp. 20150072, 2015. DOI: 10.1098/rspa.2015.0072.
  • A.T. Luu and J. Lee, Non-linear buckling of elliptical curved beams, Int. J. Non. Linear Mech., vol. 82, pp. 132–143, 2016. DOI: 10.1016/j.ijnonlinmec.2016.02.001.
  • G.C. Tsiatas and N.G. Babouskos, Linear and geometrically nonlinear analysis of non-uniform shallow arches under a central concentrated force, Int. J. Non. Linear Mech., vol. 92, pp. 92–101, 2017. DOI: 10.1016/j.ijnonlinmec.2017.03.019.
  • C.-F. Hu, Y.-L. Pi, W. Gao, and L. Li, In-plane non-linear elastic stability of parabolic arches with different rise-to span ratios, Thin-Walled Struct., vol. 129, pp. 74–84, 2018. DOI: 10.1016/j.tws.2018.03.019.
  • A.T. Atacan and R.F. Yükseler, Snap-through buckling of hinged-hinged initially imperfect beams undergoing finite deflections subjected to lateral concentrated midpoint loads, Mech. Solids, vol. 54, no. 7, pp. 1119–1130, 2019. DOI: 10.3103/S0025654419070136.
  • A.T. Atacan and R.F. Yükseler, Nonlinear behavior of beams having initially small imperfection subjected to sinusoidal load”, BEU Fen Bilimleri Dergisi, BEU J. Sci., vol. 9, no. 1, pp. 466–477, 2020. DOI: 10.17798/bitlisfen.592938.
  • X. Chen and S.A. Meguid, Snap-through buckling of micro/nanobeams in bistable micro/nanoelectromechanical systems. In: S. Meguid (ed.), Advances in Nanocomposites, pp. 235–263, 2016. DOI: 10.1007/978-3-319-31662-8_9.
  • H. Babaei and M.R. Eslami, Nonlinear snap-through instability of FGM shallow micro-arches with integrated surface piezoelectric layers based on modified couple stress theory, Int. J. Str. Stab. Dyn., vol. 19, no. 08, pp. 1950088, 2019. DOI: 10.1142/S0219455419500883.
  • E. Salari, S.A.S. Vanini, A.R. Ashoori, and A.H. Akbarzadeh, Nonlinear thermal behavior of shear deformable FG porous nanobeams with geometrical imperfection: Snap-through and postbuckling analysis, Int. J. Mech. Sci., vol. 178, pp. 105615, 2020. DOI: 10.1016/j.ijmecsci.2020.105615.
  • M. İnan, Strength of Materials, İTU Vakfı, Istanbul, 2019.
  • B. Karami, M. Janghorban, R. Dimitri, and F. Tornabene, Free vibration analysis of triclinic nanobeams based on the differential quadrature method, Appl. Sci., vol. 9, no. 17, pp. 3517, 2019. DOI: 10.3390/app9173517.
  • M.H. Hsu, Vibration analysis of annular plates, Tamkang J. Sci. Eng., vol. 10, no. 3, pp. 193–199, 2007. DOI: 10.6180/jase.2007.10.3.02.
  • A. Alibeigloo and v. Simintan, Elasticity solution of functionally graded circular and annular plates integrated with sensor and actuator layers using differential quadrature, Compos. Struct., vol. 93, no. 10, pp. 2473–2486, 2011. DOI: 10.1016/j.compstruct.2011.04.003.
  • M. Altekin, Combined effects of material properties and boundary conditions on the large deflection bending analysis of circular plates on a nonlinear elastic foundation, Comput. Concr., vol. 25, no. 6, pp. 537–549, 2020. DOI: 10.12989/cac.2020.25.6.537.
  • E. Lamacchia, A. Pirrera, I.V. Chenchiah, and P.M. Weaver, Non-axisymmetric bending of thin annular plates due to circumferentially distributed moments, Int. J. Solids Struct., vol. 51, no. 3–4, pp. 622–632, 2014. DOI: 10.1016/j.ijsolstr.2013.10.028.
  • J.H. Mathews, Numerical methods for mathematics, science and engineering. In: Science and Engineering, Prentice Hall International Inc., USA, 1992.
  • G.C. Tsiatas, I.N. Tsiptsis, and A.G. Siokas, Nonlinear buckling and post-buckling of shape memory alloy shallow arches, J. Appl. Comput. Mech., vol. 6, no. 3, pp. 665–683, 2020. DOI: 10.22055/JACM.2019.31795.1918.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.