145
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Simulation of microscopic interface damage of ZrB2 based ceramics based on cohesive zone model

, &
Pages 1417-1425 | Received 14 Dec 2021, Accepted 19 Jan 2022, Published online: 23 Feb 2022

References

  • M.W. Bird, R.P. Aune, A.F. Thomas, P.F. Becher, and K.W. White, Temperature-dependent mechanical and long crack behavior of zirconium diboride–silicon carbide composite, J. Eur. Ceram. Soc., vol. 32, no. 12, pp. 3453–3462, 2012. DOI: 10.1016/j.jeurceramsoc.2012.03.029.
  • A. Rezaie, W.G. Fahrenholtz, and G.E. Hilmas, Effect of hot pressing time and temperature on the microstructure and mechanical properties of ZrB 2–SiC, J. Mater. Sci., vol. 42, no. 8, pp. 2735–2744, 2007. volPP. DOI: 10.1007/s10853-006-1274-2.
  • D. Kalish, E.V. Clougherty, and K. Kreder, High temperature mechanical properties of HfB2 and ZrB2, J. Am. Ceram. Soc., vol. 41, no. 5, pp. 24–29, 1958.
  • I.G. Talmy, J.A. Zaykoski, and C.A. Martin, Flexural creep deformation of ZrB 2/SiC ceramics in oxidizing atmosphere, J. Am. Ceramic Soc., vol. 91, no. 5, pp. 1441–1447, 2008. DOI: 10.1111/j.1551-2916.2008.02370.x.
  • Z.C. Jou, and A.V. Virkar, High‐temperature creep and cavitation of polycrystalline aluminum nitride, J. Am. Ceramic Soc., vol. 73, no. 7, pp. 1928–1935, 1990. DOI: 10.1111/j.1151-2916.1990.tb05247.x.
  • F. Lene, and D. Leguillon, Homogenized constitutive law for a partially cohesive composite material, Int. J. Solids Struct., vol. 18, no. 5, pp. 443–458, 1982. DOI: 10.1016/0020-7683(82)90082-8.
  • J. Qu, The effect of slightly weakened interfaces on the overall elastic properties of composite materials, Mech. Mater., vol. 14, no. 4, pp. 269–281, 1993. DOI: 10.1016/0167-6636(93)90082-3.
  • J. Zhai, The validity of the modified Mori-Tanaka method for composites with slightly wwakenes interface, Acta Mech. Solida Sin., vol. 2, no. 2, pp. 108–117, 1997.
  • B.E. Clements, and E.M. Mas, A theory for plastic-bonded materials with a bimodal size distribution of filler particles, Modelling Simul. Mater. Sci. Eng., vol. 12, no. 3, pp. 407–415, 2004. DOI: 10.1088/0965-0393/12/3/004.
  • H. Tan, Y. Huang, C. Liu, and P.H. Geubelle, The Mori–Tanaka method for composite materials with nonlinear interface debonding, Int. J. Plast., vol. 21, no. 10, pp. 1890–1918, 2005. DOI: 10.1016/j.ijplas.2004.10.001.
  • D.S. Dugdale, Yielding of steel sheets containing slits, J. Mech. Phys. Solids, vol. 8, no. 2, pp. 100–104, 1960. DOI: 10.1016/0022-5096(60)90013-2.
  • A. Needleman, A continuum model for void nucleation by inclusion debonding, J. Appl. Mech., vol. 54, no. 3, pp. 525–531, 1987. DOI: 10.1115/1.3173064.
  • W.X. Zhang, L.X. Li, and T.J. Wang, Interphase effect on the strengthening behavior of particle-reinforced metal matrix composites, Comput. Mater. Sci., vol. 41, no. 2, pp. 145–155, 2007. DOI: 10.1016/j.commatsci.2007.03.011.
  • Y. Kan, Z.G. Liu, S.H. Zhang, L.W. Zhang, M. Cheng, and H.W. Song, Microstructure-based numerical simulation of the tensile behavior of SiC p/Al composites, J. Mater. Eng. Perform., vol. 23, no. 3, pp. 1069–1076, 2014. DOI: 10.1007/s11665-013-0805-7.
  • Zhang Peng, and Li Fuguo, Microstructure-based simulation of plastic deformation behavior of SiC particle reinforced Al matrix composites, Chin. J. Aeronaut., vol. 22, no. 6, pp. 663–669, 2009. volPP. DOI: 10.1016/S1000-9361(08)60156-9.
  • L.J. Zhu, W.Z. Cai, S.T. Tu, and B.Q. Gu, Microstructure-based computer simulation and mechanical modeling of particle-reinforced composites, In: International Workshop on Modelling, Simulation and Optimization, Hong Kong, China, pp. 396–399, 2009.
  • L.Q. Lin, X.Q. Wang, and X.W. Zeng, The role of cohesive zone properties on intergranular to transgranular fracture transition in polycrystalline solids, Int. J. Damage Mech., vol. 0, no. 0, pp. 1–16, 2015.
  • X. Wang, J. Zhang, Z. Wang, S. Zhou, and X. Sun, Effects of interphase properties in unidirectional fiber reinforced composite materials, Mater. Des., vol. 32, no. 6, pp. 3486–3492, 2011. volPP. DOI: 10.1016/j.matdes.2011.01.029.
  • X. Wang, J. Zhang, Z. Wang, W. Liang, and L. Zhou, Finite element simulation of the failure process of single fiber composites considering interface properties, Compos. B., vol. 45, no. 1, pp. 573–580, 2013. DOI: 10.1016/j.compositesb.2012.07.051.
  • X. Wang, W. Zhao, B. Fang, S. Lu, and Y. Zhang, Micromechanical analysis of long fiber‐reinforced composites with nanoparticle incorporation into the interphase region, J. Appl. Polym. Sci., vol. 132, no. 10, pp. 281, 2015. volPP. DOI: 10.1002/app.41573.
  • Z. Wang, X. Wang, J. Zhang, W. Liang, and L. Zhou, Automatic generation of random distribution of fibers in long-fiber-reinforced composites and mesomechanical simulation, Materials & Design., vol. 32, no. 2, pp. 885–891, 2011. volPP. DOI: 10.1016/j.matdes.2010.07.002.
  • K.P. Soldatos, M. H. B. M. Shariff, and J. Merodio, On the constitution of polar fiber-reinforced materials, Mech. Adv. Mater. Struct., vol. 28, no. 21, pp. 2255–2266, 2021. doi: 10.1080/15376494.2020.1729449.
  • Yan Cao, et al., Dynamic attainment of mixed aspect ratio for concrete members reinforced with steel fiber under impact loading, Mech. Adv. Mater. Struct., pp. 1–10, 2020. 1847371 DOI: 10.1080/15376494.2020.
  • W.G. Fahrenholtz, E.J. Wuchina, W.E. Lee, and Y. Zhou, Ultra-high temperature ceramics: Materials for extreme environment applications, Scr. Mater., vol. 16, no. 4, pp. 112–143, 2016. PP.
  • H. Tan, C. Liu, Y. Huang, and P.H. Geubelle, The cohesive law for the particle/matrix interfaces in high explosives, J. Mech. Phys. Solids, vol. 53, no. 8, pp. 1892–1917, 2005. DOI: 10.1016/j.jmps.2005.01.009.
  • J. Zhang, R. Tarek, and B. Cemal, Influence of vacancy defects on the damage mechanics of graphene nanoribbons, Int. J. Damage Mech., vol. 26, no. 1, pp. 29–49, 2017. DOI: 10.1177/1056789516645645.
  • Z. Yafang, T. Chun'an, and L. Hao, Numerical simulation on failure process in brittle and heterogeneous matrix filled with randomly distributed particles, J. Wuhan Univ. Technol. Mater. Sci. Edit., vol. 21, no. 2, pp. 150–153, 2006. DOI: 10.1007/BF02840864.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.