174
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Transient response analysis of sandwich composite panel

, , , &
Pages 1931-1942 | Received 19 Jul 2021, Accepted 24 Feb 2022, Published online: 17 Mar 2022

References

  • T. Lu and N. Fleck, The thermal shock resistance of solids, Acta Mater. ., vol. 46, no. 13, pp. 4755–4768, 1998. DOI: 10.1016/S1359-6454(98)00127-X.
  • L. Zoli, A. Vinci, P. Galizia, C. Melandri, and D. Sciti, On the thermal shock resistance and mechanical properties of novel unidirectional UHTCMCs for extreme environments, Sci. Rep., vol. 8, no. 1, pp. 1–9, 2018. DOI: 10.1038/s41598-018-27328-x.
  • N. Ferro, S. Micheletti, and S. Perotto, Anisotropic mesh adaptation for crack propagation induced by a thermal shock in 2D, Comput. Methods Appl. Mech. Eng., vol. 331, pp. 138–158, 2018. DOI: 10.1016/j.cma.2017.11.024.
  • K. Torkashvand, E. Poursaeidi, and M. Mohammadi, Effect of TGO thickness on the thermal barrier coatings life under thermal shock and thermal cycle loading, Ceram. Int., vol. 44, no. 8, pp. 9283–9293, 2018. DOI: 10.1016/j.ceramint.2018.02.140.
  • Y. Wang, X. Zhou, and T. Zhang, Size effect of thermal shock crack patterns in ceramics: Insights from a nonlocal numerical approach, Mech. Mater., vol. 137, pp. 103133, 2019. DOI: 10.1016/j.mechmat.2019.103133.
  • D. W. Richerson, 2008. Historical review of addressing the challenges of use of ceramic components in gas turbine engines, Presented at the ASME Turbo Expo 2006: Power for Land, Sea, and Air, American Society of Mechanical Engineers Digital Collection, 241–254. DOI: 10.1115/GT2006-90330.
  • F. S. Moghanlou, M. Vajdi, A. Motallebzadeh, J. Sha, M. Shokouhimehr, and M. S. Asl, Numerical analyses of heat transfer and thermal stress in a ZrB2 gas turbine stator blade, Ceram. Int. ., vol. 45, no. 14, pp. 17742–17750, 2019. DOI: 10.1016/j.ceramint.2019.05.344.
  • L. Saberi and M. Amiri, Modeling atmospheric corrosion under dynamic thin film electrolyte, J. Electrochem. Soc. ., vol. 168, no. 8, pp. 081506, 2021. DOI: 10.1149/1945-7111/ac1b24.
  • Z. Li, B. Wang, S. Guo, and J. E. Li, Thermal shock resistance of ceramic foam sandwich structures: Theoretical calculation and finite element simulation, Int. J. Solids Struct. ., vol. 176-177, pp. 108–120, 2019. DOI: 10.1016/j.ijsolstr.2019.05.025.
  • K. Kokini, J. DeJonge, S. Rangaraj, and B. Beardsley, Thermal shock of functionally graded thermal barrier coatings with similar thermal resistance, Surf. Coat. Technol. ., vol. 154, no. 2/3, pp. 223–231, 2002. DOI: 10.1016/S0257-8972(02)00031-2.
  • P. Prosuntsov, A. Shulyakovskii, and N. Y. Taraskin, Numerical simulation of a thermal-protection element of a promising reusable capsule-type lander, J. Eng. Phys. Thermophys., vol. 90, no. 1, pp. 110–116, 2017. DOI: 10.1007/s10891-017-1545-6.
  • M. Murugan, A. Ghoshal, M. J. Walock, B. D. Barnett, M. S. Pepi, and K. A. Kerner, Sand particle-induced deterioration of thermal barrier coatings on gas turbine blades, Adv. Aircraft Spacecraft Sci., vol. 4, no. 1, pp. 37–52, 2017. DOI: 10.12989/aas.2017.4.1.037.
  • B. Liu, et al., Advances on strategies for searching for next generation thermal barrier coating materials, J. Mat. Sci. Technol., vol. 35, no. 5, pp. 833–851, 2019. DOI: 10.1016/j.jmst.2018.11.016.
  • R. A. Miller, Thermal barrier coatings for aircraft engines: history and directions, JTST., vol. 6, no. 1, pp. 35–42, 1997. DOI: 10.1007/BF02646310.
  • S. Pandey and S. Pradyumna, Transient stress analysis of sandwich plate and shell panels with functionally graded material core under thermal shock, J. Therm. Stresses., vol. 41, no. 5, pp. 543–567, 2018. DOI: 10.1080/01495739.2017.1422999.
  • S. Pandey and S. Pradyumna, A finite element formulation for thermally induced vibrations of functionally graded material sandwich plates and shell panels, Compos. Struct., vol. 160, pp. 877–886, 2017. DOI: 10.1016/j.compstruct.2016.10.040.
  • S. Irfan and F. Siddiqui, A review of recent advancements in finite element formulation for sandwich plates, Chin. J. Aeronaut. , vol. 32, no. 4, pp. 785–798, 2019. DOI: 10.1016/j.cja.2018.11.011.
  • L. Saberi and H. Nahvi, Vibration analysis of a nonlinear system with a nonlinear absorber under the primary and super-harmonic resonances, Int. J. Eng. ., vol. 27, no. 3, pp. 499–508, 2014.
  • J. L. Mantari, A. S. Oktem, and C. Guedes Soares, A new trigonometric shear deformation theory for isotropic, laminated composite and sandwich plates, Int. J. Solids Struct. ., vol. 49, no. 1, pp. 43–53, 2012. DOI: 10.1016/j.ijsolstr.2011.09.008.
  • W. Liu, L. Deng, Z. Cai, D. Li, and A. Rahimi, Impact of in-plane follower force on the frequency response of the hybrid angle-ply laminated system via dynamic simulation and generalized differential quadrature framework, Eng. Comput., 1–18., 2021. DOI: 10.1007/s00366-020-01215-4.
  • A. Rahimi, A. Alibeigloo, and M. Safarpour, Three-dimensional static and free vibration analysis of graphene platelet–reinforced porous composite cylindrical shell, J. Vib. Control., vol. 26, no. 19-20, pp. 1627–1645, 2020. DOI: 10.1177/1077546320902340.
  • G. Zhang, C. Xiao, A. Rahimi, and M. Safarpour, Thermal and mechanical buckling and vibration analysis of FG-GPLRC annular plate using higher order shear deformation theory and generalized differential quadrature method, Int. J. Appl. Mech. ., vol. 12, no. 02, pp. 2050019, 2020. DOI: 10.1142/S1758825120500192.
  • S. Rangaraj and K. Kokini, Estimating the fracture resistance of functionally graded thermal barrier coatings from thermal shock tests, Surf. Coat. Technol. ., vol. 173, no. 2/3, pp. 201–212, 2003. DOI: 10.1016/S0257-8972(03)00515-2.
  • Y. Zhang, L. Guo, X. Wang, R. Shen, and K. Huang, Thermal shock resistance of functionally graded materials with mixed-mode cracks, Int. J. Solids Struct., vol. 164, pp. 202–211, 2019. DOI: 10.1016/j.ijsolstr.2019.01.012.
  • M. Golchi, M. Talebitooti, and R. Talebitooti, Thermal buckling and free vibration of FG truncated conical shells with stringer and ring stiffeners using differential quadrature method, Mech. Based Des. Struct. Mach. ., vol. 47, no. 3, pp. 255–282, 2019. DOI: 10.1080/15397734.2018.1545588.
  • H. Ahmadi and K. Foroutan, Nonlinear static and dynamic thermal buckling analysis of imperfect multilayer FG cylindrical shells with an FG porous core resting on nonlinear elastic foundation, J. Therm. Stresses, vol. 43, no. 5, pp. 629–649, 2020. DOI: 10.1080/01495739.2020.1727802.
  • A. Rahimi and A. Alibeigloo, High-accuracy approach for thermomechanical vibration analysis of fg-gplrc fluid-conveying viscoelastic thick cylindrical shell, Int. J. Appl. Mech., vol. 12, no. 07, pp. 2050073, 2020. DOI: 10.1142/S1758825120500738.
  • D. Shahgholian-Ghahfarokhi, M. Safarpour, and A. Rahimi, Torsional buckling analyses of functionally graded porous nanocomposite cylindrical shells reinforced with graphene platelets (GPLs), Mech. Based Des. Struct. Mach., vol. 49, no. 1, pp. 81–102, 2021. DOI: 10.1080/15397734.2019.1666723.
  • M. R. Barati and A. M. Zenkour, Analysis of postbuckling of graded porous GPL-reinforced beams with geometrical imperfection, Mech. Adv. Mater. Struct., vol. 26, no. 6, pp. 503–511, 2019. DOI: 10.1080/15376494.2017.1400622.
  • M. Haboussi, A. Sankar, and M. Ganapathi, Nonlinear axisymmetric dynamic buckling of functionally graded graphene reinforced porous nanocomposite spherical caps, Mech. Adv. Mater. Struct. , vol. 28, no. 2, pp. 127–140, 2021. DOI: 10.1080/15376494.2018.1549296.
  • C. Li and Q. Han, Analyzing wave propagation in graphene-reinforced nanocomposite annular plates by the semi-analytical formulation, Mech. Adv. Mater. Struct. ., vol. 28, no. 23, pp. 2314–2385, 2021. DOI: 10.1080/15376494.2020.1736698.
  • T. Y. Zhao, Y. S. Cui, Y. Q. Wang, and H. G. Pan, Vibration characteristics of graphene nanoplatelet reinforced disk-shaft rotor with eccentric mass, Mech. Adv. Mater. Struct., pp. 1–21, 2021. DOI: 10.1080/15376494.2021.1904525.
  • M. A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.-Z. Yu, and N. Koratkar, Enhanced mechanical properties of nanocomposites at low graphene content, ACS Nano., vol. 3, no. 12, pp. 3884–3890, 2009. DOI: 10.1021/nn9010472.
  • Y. Wang, R. Zeng, and M. Safarpour, Vibration analysis of FG-GPLRC annular plate in a thermal environment, Mech. Based Des. Struct. Mach., vol. 50, no. 1, pp. 319–352, 2022. DOI: 10.1080/15397734.2020.1719508.
  • K. Chu, C. Jia, and W. Li, Effective thermal conductivity of graphene-based composites, Appl. Phys. Lett., vol. 101, no. 12, pp. 121916, 2012. DOI: 10.1063/1.4754120.
  • Cheng, C.Q., Shen, Y.P., 1997. Stability analysis of piezoelectric circular cylindrical shells. Journal of Applied Mechanics 64, 847–852.
  • J. Du, X. Jin, J. Wang, and Y. Zhou, SH wave propagation in a cylindrically layered piezoelectric structure with initial stress, Acta Mech., vol. 191, no. 1-2, pp. 59–74, 2007. DOI: 10.1007/s00707-007-0447-7.
  • M. R. Eslami, R. B. Hetnarski, J. Ignaczak, N. Noda, N. Sumi, and Y. Tanigawa, Theory of Elasticity and Thermal Stresses, Springer, Dordrecht, 2013.
  • F. Durbin, Numerical inversion of Laplace transforms: an efficient improvement to Dubner and Abate’s method, Comput. J.., vol. 17, no. 4, pp. 371–376, 1974. DOI: 10.1093/comjnl/17.4.371.
  • N. Tutuncu and B. Temel, A novel approach to stress analysis of pressurized FGM cylinders, disks and spheres, Compos. Struct., vol. 91, no. 3, pp. 385–390, 2009. DOI: 10.1016/j.compstruct.2009.06.009.
  • B. Yang, S. Kitipornchai, Y.-F. Yang, and J. Yang, 3D thermo-mechanical bending solution of functionally graded graphene reinforced circular and annular plates, Appl. Math. Modell., vol. 49, pp. 69–86, 2017. DOI: 10.1016/j.apm.2017.04.044.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.