515
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Development of three-dimensional co-rotational beam model for nonlinear dynamic analysis of highly flexible slender composite blades

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1943-1954 | Received 18 Dec 2021, Accepted 24 Feb 2022, Published online: 26 Mar 2022

References

  • J.F. Manwell, J.G. McGowan, and A.L. Rogers, Wind Energy Explained. 2nd ed. Chichester, UK: John Wiley & Sons, Ltd, 2009. DOI: 10.1002/9781119994367.
  • M.O.L. Hansen, J.N. Sørensen, S. Voutsinas, N. Sørensen, and H.A. Madsen, State of the art in wind turbine aerodynamics and aeroelasticity, Prog. Aerosp. Sci., vol. 42, no. 4, pp. 285–330, 2006. DOI: 10.1016/j.paerosci.2006.10.002.
  • P. Zhang, and S. Huang, Review of aeroelasticity for wind turbine: Current status, research focus and future perspectives, Front. Energy ., vol. 5, no. 4, pp. 419–434, 2011. DOI: 10.1007/s11708-011-0166-6.
  • M.B. Ageze, Y. Hu, and H. Wu, Wind turbine aeroelastic modeling: basics and cutting edge trends, Int. J. Aerosp. Eng., vol. 2017, pp. 1–15, 2017. DOI: 10.15/2017/5263897.
  • A.A. Shabana, Dynamics of Multibody Systems. 4th ed., New York: Cambridge University Press, 2014. DOI: 10.1017/CBO9781107337213.
  • T. Kim, A.M. Hansen, and K. Branner, Development of an anisotropic beam finite element for composite wind turbine blades in multibody system, Renewable Energy, vol. 59, pp. 172–183, 2013. DOI: 10.1016/j.renene.2013.03.033.
  • E.N. Dvorkin, E. Onte, and J. Oliver, On a non-linear formulation for curved Timoshenko beam elements considering large displacement/rotation increments, Int. J. Numer. Meth. Eng., vol. 26, no. 7, pp. 1597–1613, 1988. DOI: 10.1002/nme.1620260710.
  • P. Nanakorn, and L.N. Vu, A 2D field-consistent beam element for large displacement analysis using the total Lagrangian formulation, Finite Elem. Anal. Des., vol. 42, no. 14–15, pp. 1240–1247, 2006. DOI: 10.1016/j.finel.2006.06.002.
  • K.‐J. Bathe, and S. Bolourchi, Large displacement analysis of three‐dimensional beam structures, Int. J. Numer. Meth. Eng., vol. 14, no. 7, pp. 961–986, 1979. DOI: 10.1002/nme.1620140703.
  • J.C. Simo, A finite strain beam formulation. The three-dimensional dynamic problem. Part I, Comput. Methods Appl. Mech. Eng., vol. 49, no. 1, pp. 55–70, 1985. DOI: 10.1016/0045-7825(85)90050-7.
  • J.C. Simo, and V.-Q. L, A three-dimensional finite strain rod model. Part 2: Computational aspects, Comput. Methods Appl. Mech. Eng., vol. 58, no. 1, pp. 79–116, 1986. DOI: 10.1016/0045-7825(86)90079-4.
  • E. Carrera, A.G. de Miguel, and A. Pagani, Hierarchical theories of structures based on Legendre polynomial expansions with finite element applications, Int. J. Mech. Sci., vol. 120, no. May 2016, pp. 286–300, 2017. DOI: 10.1016/j.ijmecsci.2016.10.009.
  • E. Carrera, G. Giunta, P. Nali, and M. Petrolo, Refined beam elements with arbitrary cross-section geometries, Comput. Struct., vol. 88, no. 5–6, pp. 283–293, 2010. DOI: 10.1016/j.compstruc.2009.11.002.
  • C.C. Rankin, and F.A. Brogan, An element independent corotational procedure for the treatment of large rotations, J. Pressure Vessel Technol. Trans. ASME, vol. 108, no. 2, pp. 165–174, 1986. DOI: 10.1115/1.3264765.
  • M.A. Crisfield, A consistent co-rotational formulation for non-linear, three-dimensional, beam-elements, Comput. Methods Appl. Mech. Eng., vol. 81, no. 2, pp. 131–150, 1990. DOI: 10.1016/0045-7825(90)90106-V.
  • C. Pacoste, and A. Eriksson, Beam elements in instability problems, Comput. Methods Appl. Mech. Eng., vol. 144, no. 1–2, pp. 163–197, 1997. DOI: 10.1016/S0045-7825(96)01165-6.
  • J.M. Battini, and C. Pacoste, Co-rotational beam elements with warping effects in instability problems, Comput. Methods Appl. Mech. Eng., vol. 191, no. 17-18, pp. 1755–1789, 2002. DOI: 10.1016/S0045-7825(01)00352-8.
  • J.C. Simo, and L. Vu-Quoc, On the dynamics in space of rods undergoing large motions – A geometrically exact approach, Comput. Methods Appl. Mech. Eng., vol. 66, no. 2, pp. 125–161, 1988. DOI: 10.1016/0045-7825(88)90073-4.
  • A. Ibrahimbegovic, On the choice of finite rotation parameters, Comput. Methods Appl. Mech. Eng., vol. 149, no. 1–4, pp. 49–71, 1997. DOI: 10.1016/S0045-7825(97)00059-5.
  • A. Ibrahimbegović, and M. Al Mikdad, Finite rotations in dynamics of beams and implicit time-stepping schemes, Int. J. Numer. Meth. Eng., vol. 41, no. 5, pp. 781–814, 1998. DOI: 10.1002/(SICI)1097-0207(19980315)41:5 < 781::AID-NME308 > 3.0.CO;2-9.
  • K.M. Hsiao, J.Y. Lin, and W.Y. Lin, A consistent co-rotational finite element formulation for geometrically nonlinear dynamic analysis of 3-D beams, Comput. Methods Appl. Mech. Eng., vol. 169, no. 1–2, pp. 1–18, 1999. DOI: 10.1016/S0045-7825(98)00152-2.
  • M.A. Crisfield, U. Galvanetto, and G. Jelenic, Dynamics of 3-D co-rotational beams, Comput. Mech., vol. 20, no. 6, pp. 507–519, 1997. DOI: 10.1007/s004660050271.
  • T.N. Le, J.M. Battini, and M. Hjiaj, A consistent 3D corotational beam element for nonlinear dynamic analysis of flexible structures, Comput. Methods Appl. Mech. Eng., vol. 269, pp. 538–565, 2014. DOI: 10.1016/j.cma.2013.11.007.
  • T.N. Le, J.M. Battini, and M. Hjiaj, Corotational formulation for nonlinear dynamics of beams with arbitrary thin-walled open cross-sections, Comput. Struct. vol. 134, pp. 112–127, 2014. DOI: 10.1016/j.compstruc.2013.11.005.
  • S.H. Yoon, H. Cho, J. Lee, C. Kim, and S.J. Shin, Effects of camber angle on aerodynamic performance of flapping-wing micro air vehicle, J. Fluids Struct., vol. 97, pp. 103101, 2020. DOI: 10.1016/j.jfluidstructs.2020.103101.
  • H. Cho, D.H. Gong, N. Lee, S.J. Shin, and S. Lee, Combined co-rotational beam/shell elements for fluid–structure interaction analysis of insect-like flapping wing, Nonlinear Dyn., vol. 97, no. 1, pp. 203–224, 2019. DOI: 10.1007/s11071-019-04966-y.
  • W.L. Cleghorn, and B. Tabarrok, Finite element formulation of a tapered timoshenko beam for free lateral vibration analysis, J. Sound Vib., vol. 152, no. 3, pp. 461–470, 1992. DOI: 10.1006/jsvi.1993.1368.
  • T. Yokoyama, Free vibration characteristics of rotating Timoshenko beams, Int. J. Mech. Sci., vol. 30, no. 10, pp. 743–755, 1988. DOI: 10.1016/0020-7403(88)90039-2.
  • A. Bazoune, and Y.A. Khulief, A finite beam element for vibration analysis of rotating tapered timoshenko beams, J. Sound Vib., vol. 156, no. 1, pp. 141–164, 1992. DOI: 10.1016/0022-460X(92)90817-H.
  • B. Yardimoglu, Vibration analysis of rotating tapered Timoshenko beams by a new finite element model, Shock Vib., vol. 13, no. 2, pp. 117–126, 2006. DOI: 10.1155/2006/283150.
  • S.J. Chen, and D.G. Zhang, Dynamic modeling and analysis of hub-tapered beam system, Adv. Mech. Eng., vol. 5, pp. 313279, 2013. DOI: 10.1155/2013/313279.
  • D.H. Hodges, A.R. Atilgan, M.V. Fulton, and L.W. Rehfield, Free-vibration analysis of composite beams, j. Am. Helicopter Soc., vol. 36, no. 3, pp. 36–47, 1991. DOI: 10.4050/JAHS.36.36.
  • W. Yu, D.H. Hodges, V. Volovoi, and C.E.S. Cesnik, On Timoshenko-like modeling of initially curved and twisted composite beams, Int. J. Solids Struct., vol. 39, no. 19, pp. 5101–5121, 2002. DOI: 10.1016/S0020-7683(02)00399-2.
  • Q. Wang, M.A. Sprague, J. Jonkman, and N. Johnson, Nonlinear Legendre spectral finite elements for wind turbine blade dynamics, 32nd ASME Wind Energy Symposium, 2014. (January):1–13. DOI: 10.2514/6.2014-1224.
  • A.R. Stäblein, and M.H. Hansen, Timoshenko beam element with anisotropic cross-sectional properties, ECCOMAS Congress 2016 – Proceedings of the 7th European Congress on Computational Methods in Applied Sciences and Engineering, 2016. vol. 4, pp. 7810–7819. DOI: 10.7712/100016.2377.9780.
  • S. Krenk, and P.J. Couturier, Equilibrium-based nonhomogeneous anisotropic beam element, AIAA J., vol. 55, no. 8, pp. 2773–2782, 2017. DOI: 10.2514/1.J055884.
  • J. Argyris, An excursion into large rotations, Comput. Methods Appl. Mech. Eng., vol. 32, no. 1–3, pp. 85–155, 1982. DOI: 10.1016/0045-7825(82)90069-X.
  • M.A. Crisfield, Non‐Linear Finite Element Analysis of Solids and Structures. Volume 2: Advanced Topics. 1st ed., Bafins Lane, Chichester: John Wiley & Sons Ltd, 1997.
  • S. Krenk, Non-Linear Modeling and Analysis of Solids and Structures. 1st ed. Cambridge: Cambridge University Press, 2009. DOI: 10.1017/CBO9780511812163.
  • J. Battini, Co-rotational beam elements in instability problems, Royal Institute of Technology, Stockholm, Sweden, 2002. http://kth.diva-portal.org/smash/record.jsf?pid=diva2:9068.
  • H. Moon, H. Cho, S. Theodossiades, and T. Kim, Development of an anisotropic co-rotational beam model including variable cross-section, Mech. Adv. Mater. Struct., pp. 1–14, 2022. DOI: 10.1080/15376494.2021.2015810.
  • H.M. Hilber, T.J.R. Hughes, and R.L. Taylor, Improved numerical dissipation for time integration algorithms in structural dynamics, Earthquake Eng. Struct. Dyn., vol. 5, no. 3, pp. 283–292, 1977. DOI: 10.1002/eqe.4290050306.
  • M. Smith, ABAQUS/Standard User’s Manual, Version 6.9. Providence, RI: Dassault Systemes Simulia Corp, 2009.
  • J.C. Simo, and L. Vu-Quoc, On the dynamics of flexible beams under large overall motions-the plane case: Part II, J. Appl. Mech. Trans. ASME, vol. 53, no. 4, pp. 855–863, 1986. DOI: 10.1115/1.3171871.
  • T.N. Le, J.M. Battini, and M. Hjiaj, Dynamics of 3D beam elements in a corotational context: a comparative study of established and new formulations, Finite Elem. Anal. Des., vol. 61, pp. 97–111, 2012. DOI: 10.1016/j.finel.2012.06.007.
  • J. Jonkman, S. Butterfield, W. Musial, and G. Scott, Definition of a 5-MW Reference Wind Turbine for Offshore System Development, NREL Technical Report No. TP-500-38060. Nrel., 2009.
  • T. Larsen, and A. Hansen, How 2 HAWC2, the user’s manual target, 2015.
  • H. Aagaard Madsen, T. Juul Larsen, G. Raimund Pirrung, A. Li, and F. Zahle, Implementation of the blade element momentum model on a polar grid and its aeroelastic load impact, Wind Energ. Sci., vol. 5, no. 1, pp. 1–27, 2020. DOI: 10.5194/wes-5-1-2020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.