162
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of residual stresses in additively produced thermoelastic cylinder. Part II. Residual stresses

ORCID Icon & ORCID Icon
Pages 1991-2000 | Received 05 Nov 2021, Accepted 26 Feb 2022, Published online: 22 Mar 2022

References

  • S.A. Lychev, and M. Fekry, Evaluation of residual stresses in additively produced thermoelastic cylinder. Part I thermal fields. Mech. Adv. Mater. Struct., 2022. in press.
  • A. Ozakin, and A. Yavari, A geometric theory of thermal stresses, J. Math. Phys., vol. 51, no. 3, pp. 032902, 2010. DOI: 10.1063/1.3313537.
  • S. Sadik, and A. Yavari, Geometric nonlinear thermoelasticity and the time evolution of thermal stresses, Math. Mech. Solids., vol. 22, no. 7, pp. 1546–1587, 2017. DOI: 10.1177/1081286515599458.
  • A. Safa, L. Hadji, M. Bourada, and N. Zouatnia, Thermal vibration analysis of FGM beams using an efficient shear deformation beam theory, Earthquake Struct., vol. 17, no. 3, pp. 329–336, 2019. DOI: 10.12989/eas.2019.17.3.329.
  • Z. Abdelhak, L. Hadji, T.H. Daouadji, and E.A. Bedia, Thermal buckling of functionally graded plates using a n-order four variable refined theory, Adv. Mater. Res., vol. 4, no. 1, pp. 31–44, 2015. DOI: 10.12989/amr.2015.4.4.031.
  • L. Hadji, and F. Bernard, Bending and free vibration analysis of functionally graded beams on elastic foundations with analytical validation, Adv. Mater. Res., vol. 9, no. 1, pp. 63–98, 2020. DOI: 10.12989/amr.2020.9.1.063.
  • Z. Abdelhak, L. Hadji, Z. Khelifa, T. Hassaine Daouadji, and E.A. Adda Bedia, Analysis of buckling response of functionally graded sandwich plates using a refined shear deformation theory, Wind Struct., vol. 22, no. 3, pp. 291–305, 2016. DOI: 10.12989/was.2016.22.3.291.
  • S.I. Tahir, A. Chikh, A. Tounsi, M.A. Al-Osta, S.U. Al-Dulaijan, and M.M. Al-Zahrani, Wave propagation analysis of a ceramic-metal functionally graded sandwich plate with different porosity distributions in a hygro-thermal environment, Compos. Struct., vol. 269, pp. 114030, 2021. DOI: 10.1016/j.compstruct.2021.114030.
  • M.W. Zaitoun, et al., Influence of the visco-Pasternak foundation parameters on the buckling behavior of a sandwich functional graded ceramic–metal plate in a hygrothermal environment, Thin-Wall Struct., vol. 170, pp. 108549, 2022. DOI: 10.1016/j.tws.2021.108549.
  • P. Mercelis, and J.P. Kruth, Residual stresses in selective laser sintering and selective laser melting, Rapid Prototyp J., vol. 12, no. 5, pp. 254–265, 2006. DOI: 10.1108/13552540610707013.
  • M.F. Zaeh, and G. Branner, Investigations on residual stresses and deformations in selective laser melting, Prod. Eng. Res. Devel., vol. 4, no. 1, pp. 35–45, 2010. DOI: 10.1007/s11740-009-0192-y.
  • J.P. Kruth, J. Deckers, E. Yasa, and R. Wauthlé, Assessing and comparing influencing factors of residual stresses in selective laser melting using a novel analysis method. Proc. Inst. Mech. Eng., Part B. J. Eng. Manuf., vol. 226, no. 6, pp. 980–991, 2012. DOI: 10.1177/0954405412437085.
  • A. Klarbring, T. Olsson, and J. Stalhand, Theory of residual stresses with application to an arterial geometry, Arch. Mech., vol. 59, no. 4-5, pp. 341–364, 2007.
  • A. Jafarpour, M. Safarabadi, M. Haghighi-Yazdi, and A. Yousefi, Numerical study of curing thermal residual stresses in GF/CNF/epoxy nanocomposite using a random generator model, Mech. Adv. Mater. Struct., vol. 28, no. 24, pp. 2618–2611, 2021. DOI: 10.1080/15376494.2020.1748254.
  • V.L. Bogdanov, Effect of residual stresses on fracture of semi-infinite composites with cracks, Mech. Adv. Mater. Struct., vol. 15, no. 6-7, pp. 453–460, 2008. DOI: 10.1080/15376490802138427.
  • P. Ciarletta, M. Destrade, A.L. Gower, and M. Taffetani, Morphology of residually stressed tubular tissues: Beyond the elastic multiplicative decomposition, J. Mech. Phys. Solids., vol. 90, pp. 242–253, 2016. DOI: 10.1016/j.jmps.2016.02.020.
  • C. Brauner, T.B. Block, H. Purol, and A.S. Herrmann, Microlevel manufacturing process simulation of carbon fiber/epoxy composites to analyze the effect of chemical and thermal induced residual stresses, J. Compos. Mater., vol. 46, no. 17, pp. 2123–2143, 2012. DOI: 10.1177/0021998311430157.
  • Y. Abou Msallem, F. Jacquemin, N. Boyard, A. Poitou, D. Delaunay, and S. Chatel, Material characterization and residual stresses simulation during the manufacturing process of epoxy matrix composites, Compos Part A: Appl. Sci. Manuf., vol. 41, no. 1, pp. 108–115, 2010. DOI: 10.1016/j.compositesa.2009.09.025.
  • C. Brauner, T.B. Block, and A.S. Herrmann, Meso-level manufacturing process simulation of sandwich structures to analyze viscoelastic-dependent residual stresses, J. Compos. Mater., vol. 46, no. 7, pp. 783–799, 2012. DOI: 10.1177/0021998311410498.
  • S.A. Lychev, Universal deformations of growing solids, Mech. Solids., vol. 46, no. 6, pp. 863–876, 2011. DOI: 10.3103/S0025654411060069.
  • A.D. Polyanin, and S.A. Lychev, Decomposition methods for coupled 3D equations of applied mathematics and continuum mechanics: Partial survey, classification, new results, and generalizations, Appl. Math. Modell., vol. 40, no. 4, pp. 3298–3324, 2016. DOI: 10.1016/j.apm.2015.10.016.
  • A.D. Hobiny, and I.A. Abbas, Theoretical analysis of thermal damages in skin tissue induced by intense moving heat source, Int. J. Heat Mass Transf., vol. 124, pp. 1011–1014, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.04.018.
  • I.A. Abbas, F.S. Alzahrani, and A. Elaiw, A DPL model of photothermal interaction in a semiconductor material, Waves Random Complex Medium., vol. 29, no. 2, pp. 328–343, 2019. DOI: 10.1080/17455030.2018.1433901.
  • I.A. Abbas, Analytical solution for a free vibration of a thermoelastic hollow sphere, Mech. Based Des. Struct. Mach., vol. 43, no. 3, pp. 265–276, 2015. DOI: 10.1080/15397734.2014.956244.
  • I.A. Abbas, Eigenvalue approach on fractional order theory of thermoelastic diffusion problem for an infinite elastic medium with a spherical cavity, Appl. Math. Modell., vol. 39, no. 20, pp. 6196–6206, 2015. DOI: 10.1016/j.apm.2015.01.065.
  • A.L. Levitin, S.A. Lychev, A.V. Manzhirov, and M.Y. Shatalov, Nonstationary vibrations of a discretely accreted thermoelastic parallelepiped, Mech. Solids., vol. 47, no. 6, pp. 677–689, 2012. DOI: 10.3103/S0025654412060106.
  • S.A. Lychev, and A.V. Manzhirov, Discrete and continuous growth of hollow cylinder. Finite deformations, In Proceedings of the World Congress on Engineering, vol. 2, pp. 1327–1332, 2014.
  • S.A. Lychev, A. Manzhirov, M. Shatalov, and I. Fedotov, Transient temperature fields in growing bodies subject to discrete and continuous growth regimes, Procedia IUTAM., vol. 23, pp. 120–129, 2017. DOI: 10.1016/j.piutam.2017.06.012.
  • S.A. Lychev, Geometric aspects of the theory of incompatible deformations in growing solids. In Mechanics for MATERIALS and technologies, Springer, Cham, pp. 327–347, 2017.
  • Philip M. Morse, Herman Feshbach, and E.L. Hill, Methods of theoretical physics, Am. J. Phys., vol. 22, no. 6, pp. 410–413, 1954. DOI: 10.1119/1.1933765.
  • M.J. Donachie, Titanium: A Technical Guide,. ASM International, Netherlands, 2000.
  • S.A. Lychev, G.V. Kostin, K.G. Koifman, and T.N. Lycheva, Modeling and optimization of layer-by-layer structures, J. Phys: Conf. Series., vol. 1009, no. 1, pp. 012014–012050, 2018. DOI: 10.1088/1742-6596/1009/1/012014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.