329
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Thermal fracture analysis of a two-dimensional decagonal quasicrystal coating structure with interface cracks

, , , &
Pages 2001-2016 | Received 06 Jan 2022, Accepted 26 Feb 2022, Published online: 11 Apr 2022

References

  • D. Shechtman, I. Blech, D. Gratias, and J.W. Cahn, Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett., vol. 53, no. 20, pp. 1951–1953, 1984. DOI: 10.1103/PhysRevLett.53.1951.
  • K. Chattopadhyay, S. Lele, S. Ranganathan, G.N. Subbanna, and N. Thangaraj, Electron microscopy of quasi-crystals and related structures, Curr. Sci., vol. 54, pp. 895–903, 1985.
  • J.M. Dubois , Properties- and applications of quasicrystals and complex metallic alloys , Chem. Soc. Rev., vol. 41, no. 20, pp. 6760–6777, 2012. DOI: 10.1039/C2CS35110B.
  • T.P. Yadav and N.K. Mukhopadhyay, Quasicrystal: a low-frictional novel material, Curr. Opin. Chem. Eng., vol. 19, pp. 163–169, 2018. DOI: 10.1016/j.coche.2018.03.005.
  • X.P. Guo, J.F. Chen, H.L. Yu, H.L. Liao, and C. Coddet, A study on the microstructure and tribological behavior of cold-sprayed metal matrix composites reinforced by particulate quasicrystal, Surf. Coat. Technol., vol. 268, pp. 94–98, 2015. DOI: 10.1016/j.surfcoat.2014.05.062.
  • B.A. Silva Guedes de Lima, R.M. Gomesa, S.J. Guedes de Lima, D. Dragoe, M.G.B. Labrousse, R.K. Njiwac, and J.M. Dubois, Self-lubricating, low-friction, wear-resistant Al-based quasicrystalline coatings, Sci. Technol. Adv. Mater., vol. 17, no. 1, pp. 71–79, 2016. DOI: 10.1080/14686996.2016.1152563.
  • J.M. Dubois, New prospects from potential applications of quasicrystalline materials, Mater. Sci. Eng. A, vol. 294–296, pp. 4–9, 2000. DOI: 10.1016/S0921-5093(00)01305-8.
  • V.N. Balbyshev, D.J. King, A.N. Khramov, L.S. Kasten, and M.S. Donley, Investigation of quaternary Al-based quasicrystal thin films for corrosion protection, Thin Solid Films, vol. 447–448, pp. 558–563, 2004. DOI: 10.1016/j.tsf.2003.07.026.
  • X.Y. Li, T. Wang, R.F. Zheng, and G.Z. Kang, Fundamental thermo-electro-elastic solutions for 1D hexagonal QC, Z. Angew. Math. Mech., vol. 95, no. 5, pp. 457–468, 2015. DOI: 10.1002/zamm.201300095.
  • A. Inaba, R. Lortz, C. Meingast, J.Q. Guo, and A.P. Tsai, Heat capacity and thermal expansion of a decagonal Al–Co–Ni quasicrystal, J. Alloys Compd., vol. 342, no. 1–2, pp. 302–305, 2002. DOI: 10.1016/S0925-8388(02)00197-4.
  • E. Abe, S.J. Pennycook, and A.P. Tsai, Direct observation of a local thermal vibration anomaly in a quasicrystal, Nature, vol. 421, no. 6921, pp. 347–350, 2003. DOI: 10.1038/nature01337.
  • J.A. Barrow, M.C. Lemieux, B.A. Cook, A.R. Ross, V.V. Tsukruk, P.C. Canfield, and D.J. Sordelet, Micro-surface and bulk thermal behavior of a single-grain decagonal Al–Ni–Co quasicrystal, J. Non-Cryst. Solids, vol. 334–335, pp. 312–316, 2004. DOI: 10.1016/j.jnoncrysol.2003.11.064.
  • K. Edagawa, K. Suzuki, P. Mandal, and S. Takeuchi, Thermal phason fluctuation in an Al–Cu–Co decagonal quasicrystal, J. Non-Cryst. Solids, vol. 334–335, pp. 298–302, 2004. DOI: 10.1016/j.jnoncrysol.2003.11.061.
  • X.B. Liu, Y. Osawa, S. Takamori, and G.C. Yang, Thermal stability of decagonal quasicrystal prepared from undercooled Al72Ni12Co16 alloy melt, Mater. Lett., vol. 61, no. 29, pp. 5164–5168, 2007. DOI: 10.1016/j.matlet.2007.04.021.
  • S. Burkardt, M. Erbudak, and R. Mäder, High-temperature surface oxidation of the decagonal AlCoNi quasicrystal, Surf. Sci., vol. 603, no. 6, pp. 867–872, 2009. DOI: 10.1016/j.susc.2009.01.037.
  • G.T. Liu and T.Y. Fan, Complex method of the plane elasticity in 2D quasicrystal with point group 10 mm tenfold rotational symmetry and holey problems, Sci. China Ser. E, vol. 46, no. 3, pp. 326–336, 2003. DOI: 10.1360/03ye9036.
  • X. Wang and P. Schiavone, Two non-elliptical decagonal quasicrystalline inclusions with internal uniform hydrostatic phonon stresses, Z. Angew. Math. Mech., vol. 98, no. 11, pp. 2027–2034, 2018. DOI: 10.1002/zamm.201800106.
  • T.Y. Fan, L.Y. Xie, L. Fan, and Q.Z. Wang, Interface of quasicrystal and crystal, Chin. Phys. B, vol. 20, no. 7, pp. 076102, 2011. DOI: 10.1088/1674-1056/20/7/076102.
  • Y. Li, L.Z. Yang, L.L. Zhang, and Y. Gao, Size-dependent effect on functionally graded multilayered two-dimensional quasicrystal nanoplates under patch/uniform loading, Acta Mech., vol. 229, no. 8, pp. 3501–3515, 2018. DOI: 10.1007/s00707-018-2177-4.
  • S.M. Hosseini, J. Sladek, and V. Sladek, Anisotropic transient thermoelasticity analysis in a two-dimensional decagonal quasicrystal using meshless local Petrov-Galerkin (MLPG) method, Appl. Math. Model., vol. 66, pp. 275–295, 2019. DOI: 10.1016/j.apm.2018.09.024.
  • C.Y. Fan, S.Y. Lv, H.Y. Dang, Y.P. Yuan, and M.H. Zhao, Fundamental solutions and analysis of the interface crack for two-dimensional decagonal quasicrystal bimaterial via the displacement discontinuity method, Eng. Anal. Bound. Elem., vol. 106, pp. 462–472, 2019. DOI: 10.1016/j.enganabound.2019.05.029.
  • M.H. Zhao, C.Y. Fan, C.S. Lu, and H.Y. Dang, Interfacial fracture analysis for a two-dimensional decagonal quasi-crystal coating layer structure, Appl. Math. Mech. Engl. Ed., vol. 42, no. 11, pp. 1633–1648, 2021. DOI: 10.1007/s10483-021-2786-5.
  • J. Sladek, V. Sladek, S. Krahulec, C. Zhang, and M. Wunsche, Crack analysis in decagonal quasicrystals by the MLPG, Int. J. Fract., vol. 181, no. 1, pp. 115–126, 2013. DOI: 10.1007/s10704-013-9825-4.
  • X.F. Li, T.Y. Fan, and Y.F. Sun, A decagonal quasicrystal with a Griffith crack, Philos. Mag. A, vol. 79, pp. 1943–1952, 1999. DOI: 10.1080/01418619908210401.
  • S.Y. Chang, B.J. Chen, Y.T. Hsiao, D.S. Wang, T.S. Chen, M.S. Leu, and H.J. Lai, Preparation and nanoscopic plastic deformation of toughened Al-Cu-Fe-based quasicrystal/vanadium multilayered coatings, Mater. Chem. Phys., vol. 213, pp. 277–284, 2018. DOI: 10.1016/j.matchemphys.2018.04.045.
  • J. Mora, P. Garcia, R. Muelas, and A. Aguero, Hard quasicrystalline coatings deposited by hvof thermal spray to reduce ice accretion in aero-structures components, Coatings, vol. 10, no. 3, pp. 290, 2020. DOI: 10.3390/coatings10030290.
  • T.J. Watson, A. Nardi, A.T. Ernst, I. Cernatescu, B.A. Bedard, and M. Aindow, Cold spray deposition of an icosahedral-phase-strengthened aluminum alloy coating, Surf. Coat. Technol., vol. 324, pp. 57–63, 2017. DOI: 10.1016/j.surfcoat.2017.05.049.
  • M. Xiao, X.Q. Liu, S.H. Zeng, Z.G. Zheng, G. Wang, Z.G. Qiu, M. Liu, and D.C. Zeng, Effects of particle size on the microstructure and mechanical properties of HVAF-sprayed Al-based quasicrystalline coatings, J. Therm. Spray Technol., vol. 30, no. 5, pp. 1380–1392, 2021. DOI: 10.1007/s11666-021-01202-1.
  • M.W. Cai and J. Shen, Phase transformation of high velocity air fuel (HVAF)-sprayed Al-Cu-Fe-Si quasicrystalline coating, Metals, vol. 10, no. 6, pp. 834, 2020. DOI: 10.3390/met10060834.
  • P.P. Bandyopadhyay, M. Hadad, C. Jaeggi, and S. Siegmann, Microstructural, tribological and corrosion aspects of thermally sprayed Ti-Cr-Si coatings, Surf. Coat. Technol., vol. 203, no. 1–2, pp. 35–45, 2008. DOI: 10.1016/j.surfcoat.2008.07.026.
  • J.M. Dubois, S.S. Kang, P. Archambault, and B. Colleret, Thermal diffusivity of quasicrystalline and related crystalline alloys, J. Mater. Res., vol. 8, no. 1, pp. 38–43, 1993. DOI: 10.1017/S0884291400120321.
  • A. Sánchez, F.J. Garcia de Blas, J.M. Algaba, J. Alvarez, P. Vallès, M.C. García-Poggio, and A. Agüero, Application of quasicrystalline materials as thermal barriers in aeronautics and future perspectives of use for these materials, Mater Res. Soc. Symp. – Proc., vol. 553, pp. 447–458, 1998. DOI: 10.1557/PROC-553-447.
  • H.Y. Dang, S.Y. Lv, C.Y. Fan, C.S. Lu, J.L. Ren, and M.H. Zhao, Analysis of anti-plane interface cracks in one-dimensional hexagonal quasicrystal coating, Appl. Math. Model., vol. 81, pp. 641–652, 2020. DOI: 10.1016/j.apm.2020.01.024.
  • S.L. Crouch, Solution of plane elasticity problems by the displacement discontinuity method. I. Infinite body solution, Int. J. Numer. Methods Eng., vol. 10, no. 2, pp. 301–343, 1976. DOI: 10.1002/nme.1620100206.
  • T. Rabczuk and T. Belytschko, Crack particles: a simplified meshfree method for arbitrary evolving cracks, Int. J. Numer. Methods Eng., vol. 61, no. 13, pp. 2316–2343, 2004. DOI: 10.1002/nme.1151.
  • P. Areias, J. Reinoso, P.P. Camanho, J. Cesar de Sa, and T. Rabczuk, Effective 2D and 3D crack propagation with local mesh refinement and the screened Poisson equation, Eng. Fract. Mech., vol. 189, pp. 339–360, 2018. DOI: 10.1016/j.engfracmech.2017.11.017.
  • S. Goswami, C. Anitescu, S. Chakraborty, and T. Rabczuk, Transfer learning enhanced physics informed neural network for phase-field modeling of fracture, Theor. Appl. Fract. Mech., vol. 106, pp. 102447, 2020. DOI: 10.1016/j.tafmec.2019.102447.
  • C.Y. Dong and C.J. Pater, Numerical implementation of displacement discontinuity method and its application in hydraulic fracturing, Comput. Methods Appl. Mech. Eng., vol. 191, no. 8–10, pp. 745–760, 2001. DOI: 10.1016/S0045-7825(01)00273-0.
  • K. Wu and J.E. Olson, A simplified three-dimensional displacement discontinuity method for multiple fracture simulations, Int. J. Fract., vol. 193, no. 2, pp. 191–204, 2015. DOI: 10.1007/s10704-015-0023-4.
  • E. Gordeliy and E. Detournay, Displacement discontinuity method for modeling axisymmetric cracks in an elastic half-space, Int. J. Solids Struct., vol. 48, no. 19, pp. 2614–2629, 2011. DOI: 10.1016/j.ijsolstr.2011.05.009.
  • P.H. Wen, M.H. Aliabadi, J. Sladek, and V. Sladek, Displacement discontinuity method for cracked orthotropic strip: dynamic, Wave Mot., vol. 45, no. 3, pp. 293–308, 2008. DOI: 10.1016/j.wavemoti.2007.06.006.
  • M. Li, Y.L. Tian, P.H. Wen, and M.H. Aliabadi, Anti-plane interfacial crack with functionally graded coating: static and dynamic, Theor. Appl. Fract. Mech., vol. 86, pp. 250–259, 2016. DOI: 10.1016/j.tafmec.2016.07.010.
  • J.H. Guo, J.Y. Yu, Y.M. Xing, E.N. Pan, and L.H. Li, Thermoelastic analysis of a two-dimensional decagonal quasicrystal with a conductive elliptic hole, Acta Mech., vol. 227, no. 9, pp. 2595–2607, 2016. DOI: 10.1007/s00707-016-1657-7.
  • R. Shail, Some thermoelastic stress distributions in an infinite solid and a thick plate containing penny-shaped cracks, Mathematika, vol. 11, no. 2, pp. 102–118, 1964. DOI: 10.1112/S0025579300004319.
  • M.H. Zhao, Y.P. Shen, Y.J. Liu, and G.N. Liu, The method of analysis of cracks in three-dimensional transversely isotropic media: boundary integral equation approach, Eng. Anal. Bound. Elem., vol. 21, no. 2, pp. 169–178, 1998. DOI: 10.1016/S0955-7997(98)00033-2.
  • L.L. Zhang, L.Z. Yang, L.Y. Yu, and Y. Gao, General solutions of thermoelastic plane problems of two-dimensional quasicrystals, Trans. Nanjing Univ. Aeronaut. Astronaut., vol. 31, pp. 132–136, 2014. DOI: 10.1080/00224545.1994.9711744.
  • P.F. Hou, H.Y. Jiang, and Q.H. Li, Three-dimensional steady-state general solution for isotropic thermoelastic materials with applications I: general solutions, J. Therm. Stress., vol. 36, no. 7, pp. 727–747, 2013. DOI: 10.1080/01495739.2013.788903.
  • R.J. Tang, M.C. Chen, and J.C. Yue, Theoretical analysis of three-dimensional interface crack, Sci. China Ser. A Math., vol. 41, no. 4, pp. 443–448, 1998. DOI: 10.1007/BF02879037.
  • A.B. Zhang and B.L. Wang, An opportunistic analysis of the interface crack based on the modified interface dislocation method, Int. J. Solids Struct., vol. 50, no. 1, pp. 15–20, 2013. DOI: 10.1016/j.ijsolstr.2012.08.024.
  • T.Y. Fan, Mathematical theory and methods of mechanics of quasicrystalline materials, Engineering, vol. 5, no. 4, pp. 407–448, 2013. DOI: 10.4236/eng.2013.54053.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.