170
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

On size-dependent nonlinear forced dynamics of MRE-cored sandwich micro-pipes in presence of moving flow and harmonic excitation

& ORCID Icon
Pages 2017-2036 | Received 09 Jan 2022, Accepted 26 Feb 2022, Published online: 17 Mar 2022

References

  • R. B. Vemuluri, V. Rajamohan, and P. E. Sudhagar, Structural optimization of tapered composite sandwich plates partially treated with magnetorheological elastomers, Compos. Struct., vol. 200, pp. 258–276, 2018. DOI: 10.1016/j.compstruct.2018.05.100.
  • S. Bornassi, and H. M. Navazi, Torsional vibration analysis of a rotating tapered sandwich beam with magnetorheological elastomer core, J. Intell. Mater. Syst. Struct., vol. 29, no. 11, pp. 2406–2423, 2018. DOI: 10.1177/1045389X18770864.
  • F. de Souza Eloy, G. F. Gomes, A. C. Ancelotti, Jr, S. S. da Cunha, Jr, A. J. F. Bombard, and D. M. Junqueira, A numerical-experimental dynamic analysis of composite sandwich beam with magnetorheological elastomer honeycomb core, Compos. Struct., vol. 209, pp. 242–257, 2019. DOI: 10.1016/j.compstruct.2018.10.041.
  • R. Selvaraj, and M. Ramamoorthy, Dynamic analysis of laminated composite sandwich beam containing carbon nanotubes reinforced magnetorheological elastomer, J. Sandwich Struct. Mater., vol. 23, no. 5, pp. 1784–1807, 2021. " 20121. DOI: 10.1177/1099636220905253.
  • H. Li, et al., A nonlinear analytical model of composite plate structure with an MRE function layer considering internal magnetic and temperature fields, Compos. Sci. Technol., vol. 200, pp. 108445, 2020. DOI: 10.1016/j.compscitech.2020.108445.
  • Y.-X. Zhen, and B. Fang, Nonlinear vibration of fluid-conveying single-walled carbon nanotubes under harmonic excitation, Int. J. Non-Linear Mech., vol. 76, pp. 48–55, 2015. DOI: 10.1016/j.ijnonlinmec.2015.05.005.
  • A. Azrar, M. Ben Said, L. Azrar, and A. A. Aljinaidi, Dynamic analysis of Carbon NanoTubes conveying fluid with uncertain parameters and random excitation, Mech. Adv. Mater. Struct., vol. 26, no. 10, pp. 898–913, 2019. DOI: 10.1080/15376494.2018.1430272.
  • A. Amiri, A. Masoumi, and R. Talebitooti, Flutter and bifurcation instability analysis of fluid-conveying micro-pipes sandwiched by magnetostrictive smart layers under thermal and magnetic field, Int. J. Mech. Mater. Des., vol. 16, no. 3, pp. 569–588, 2020. DOI: 10.1007/s10999-020-09487-w.
  • L. Yin, Q. Qian, and L. Wang, Strain gradient beam model for dynamics of microscale pipes conveying fluid, Appl. Math. Modell., vol. 35, no. 6, pp. 2864–2873, 2011. DOI: 10.1016/j.apm.2010.11.069.
  • S. M. Bağdatli, and N. Togun, Stability of fluid conveying nanobeam considering nonlocal elasticity, Int. J. Non-Linear Mech., vol. 95, pp. 132–142, 2017. DOI: 10.1016/j.ijnonlinmec.2017.06.004.
  • Y. Guo, J. Xie, and L. Wang, Three-dimensional vibration of cantilevered fluid-conveying micropipes—types of periodic motions and small-scale effect, Int. J. Non-Linear Mech., vol. 102, pp. 112–135, 2018. DOI: 10.1016/j.ijnonlinmec.2018.04.001.
  • M. Mohammadimehr, H. Mohammadi Hooyeh, H. Afshari, and M. Salarkia, Free vibration analysis of double-bonded isotropic piezoelectric Timoshenko microbeam based on strain gradient and surface stress elasticity theories under initial stress using differential quadrature method, Mech. Adv. Mater. Struct., vol. 24, no. 4, pp. 287–303, 2017. DOI: 10.1080/15376494.2016.1142022.
  • Y. Q. Wang, Y. H. Wan, and J. W. Zu, Nonlinear dynamic characteristics of functionally graded sandwich thin nanoshells conveying fluid incorporating surface stress influence, Thin-Walled Struct., vol. 135, pp. 537–547, 2019. DOI: 10.1016/j.tws.2018.11.023.
  • Y. Q. Wang, H. Li, Y. Zhang, and J. W. Zu, A nonlinear surface-stress-dependent model for vibration analysis of cylindrical nanoscale shells conveying fluid, Appl. Math. Modell., vol. 64, pp. 55–70, 2018. DOI: 10.1016/j.apm.2018.07.016.
  • M. R. Ghazavi, H. Molki, and A. Ali Beigloo, Nonlinear analysis of the micro/nanotube conveying fluid based on second strain gradient theory, Appl. Math. Modell., vol. 60, pp. 77–93, 2018. DOI: 10.1016/j.apm.2018.03.013.
  • D. Wang, C. Bai, and H. Zhang, Nonlinear vibrations of fluid-conveying FG cylindrical shells with piezoelectric actuator layer and subjected to external and piezoelectric parametric excitations, Compos. Struct., vol. 248, pp. 112437, 2020. DOI: 10.1016/j.compstruct.2020.112437.
  • G. Sheng, Y. Han, Z. Zhang, and L. Zhao, Nonlinear dynamic response of functionally graded cylindrical microshells conveying steady viscous fluid, Compos. Struct., vol. 274, pp. 114318, 2021. DOI: 10.1016/j.compstruct.2021.114318.
  • Z. Saadatnia, and E. Esmailzadeh, Nonlinear harmonic vibration analysis of fluid-conveying piezoelectric-layered nanotubes, Compos. Part B: Eng., vol. 123, pp. 193–209, 2017. DOI: 10.1016/j.compositesb.2017.05.012.
  • H. Dai, L. Wang, and Q. Ni, Dynamics of a fluid-conveying pipe composed of two different materials, Int. J. Eng. Sci., vol. 73, pp. 67–76, 2013. DOI: 10.1016/j.ijengsci.2013.08.008.
  • A. Amiri, I. Pournaki, E. Jafarzadeh, R. Shabani, and G. Rezazadeh, Vibration and instability of fluid-conveyed smart micro-tubes based on magneto-electro-elasticity beam model, Microfluid. Nanofluid., vol. 20, no. 2, pp. 38, 2016. DOI: 10.1007/s10404-016-1706-5.
  • Q. Jin, and Y. Ren, Nonlinear size-dependent bending and forced vibration of internal flow-inducing pre-and post-buckled FG nanotubes, Commun. Nonlinear Sci. Numer. Simul., vol. 104, pp. 106044, 2022. DOI: 10.1016/j.cnsns.2021.106044.
  • O. Martin, An iterative algorithm for studying forced vibrations of a nanotube conveying fluid, Mech. Adv. Mater. Struct., pp. 1–24, 2021. DOI: 10.1080/15376494.2021.1921317.
  • X. Zhu, Z. Lu, Z. Wang, L. Xue, and A. Ebrahimi-Mamaghani, Vibration of spinning functionally graded nanotubes conveying fluid, Eng. Comput., pp. 1–22, 2020. DOI: 10.1007/s00366-020-01123-7.
  • M. Tang, Q. Ni, L. Wang, Y. Luo, and Y. Wang, Nonlinear modeling and size-dependent vibration analysis of curved microtubes conveying fluid based on modified couple stress theory, Int. J. Eng. Sci., vol. 84, pp. 1–10, 2014. DOI: 10.1016/j.ijengsci.2014.06.007.
  • W.-M. Zhang, H. Yan, H.-M. Jiang, K.-M. Hu, Z.-K. Peng, and G. Meng, Dynamics of suspended microchannel resonators conveying opposite internal fluid flow: Stability, frequency shift and energy dissipation, J. Sound Vib., vol. 368, pp. 103–120, 2016. DOI: 10.1016/j.jsv.2016.01.029.
  • A. M. Dehrouyeh-Semnani, H. Zafari-Koloukhi, E. Dehdashti, and M. Nikkhah-Bahrami, A parametric study on nonlinear flow-induced dynamics of a fluid-conveying cantilevered pipe in post-flutter region from macro to micro scale, Int. J. Non-Linear Mech., vol. 85, pp. 207–225, 2016. DOI: 10.1016/j.ijnonlinmec.2016.07.008.
  • Z. H. Li, and Y. Q. Wang, Vibration and stability analysis of lipid nanotubes conveying fluid, Microfluid. Nanofluid., vol. 23, no. 11, pp. 1–12, 2019. DOI: 10.1007/s10404-019-2290-2.
  • A. Amiri, R. Vesal, and R. Talebitooti, Flexoelectric and surface effects on size-dependent flow-induced vibration and instability analysis of fluid-conveying nanotubes based on flexoelectricity beam model, Int. J. Mech. Sci., vol. 156, pp. 474–485, 2019. DOI: 10.1016/j.ijmecsci.2019.04.018.
  • F. Zheng, Y. Lu, and A. Ebrahimi-Mamaghani, Dynamical stability of embedded spinning axially graded micro and nanotubes conveying fluid, Waves Random Complex Medium, pp. 1–39, 2020. DOI: 10.1080/17455030.2020.1821935.
  • S. Aguib, A. Nour, H. Zahloul, G. Bossis, Y. Chevalier, and P. Lançon, Dynamic behavior analysis of a magnetorheological elastomer sandwich plate, Int. J. Mech. Sci., vol. 87, pp. 118–136, 2014. DOI: 10.1016/j.ijmecsci.2014.05.014.
  • S. Aguib, A. Nour, B. Benkoussas, I. Tawfiq, T. Djedid, and N. Chikh, Numerical simulation of the nonlinear static behavior of composite sandwich beams with a magnetorheological elastomer core, Compos. Struct., vol. 139, pp. 111–119, 2016. DOI: 10.1016/j.compstruct.2015.11.075.
  • V. R. Babu, and R. Vasudevan, Dynamic analysis of tapered laminated composite magnetorheological elastomer (MRE) sandwich plates, Smart Mater. Struct., vol. 25, no. 3, pp. 035006, 2016. DOI: 10.1088/0964-1726/25/3/035006.
  • H. Navazi, S. Bornassi, and H. Haddadpour, Vibration analysis of a rotating magnetorheological tapered sandwich beam, Int. J. Mech. Sci., vol. 122, pp. 308–317, 2017. DOI: 10.1016/j.ijmecsci.2017.01.016.
  • A. Ghorbanpour Arani, H. BabaAkbar Zarei, M. Eskandari, and P. Pourmousa, Vibration behavior of visco-elastically coupled sandwich beams with magnetorheological core and three-phase carbon nanotubes/fiber/polymer composite facesheets subjected to external magnetic field, J. Sandwich Struct. Mater ., vol. 21, no. 7, pp. 2194–2218, 2019. DOI: 10.1177/1099636217743177.
  • M. Hoseinzadeh, and J. Rezaeepazhand, Dynamic stability enhancement of laminated composite sandwich plates using smart elastomer layer, J. Sandwich Struct. Mater., vol. 22, no. 8, pp. 2796–2817, 2020. DOI: 10.1177/1099636218819158.
  • S. Bornassi, H. Navazi, and H. Haddadpour, Aeroelastic instability analysis of a turbomachinery cascade with magnetorheological elastomer based adaptive blades, Thin-Walled Struct., vol. 130, pp. 71–84, 2018. DOI: 10.1016/j.tws.2018.05.010.
  • F. de Souza Eloy, G. F. Gomes, A. C. Ancelotti, Jr, S. S. da Cunha, Jr, A. J. F. Bombard, and D. M. Junqueira, Experimental dynamic analysis of composite sandwich beams with magnetorheological honeycomb core, Eng. Struct., vol. 176, pp. 231–242, 2018. DOI: 10.1016/j.engstruct.2018.08.101.
  • M. Rokn-Abadi, M. Yousefi, H. Haddadpour, and M. Sadeghmanesh, Dynamic stability analysis of a sandwich beam with magnetorheological elastomer core subjected to a follower force, Acta Mech., vol. 231, no. 9, pp. 3715–3727, 2020. DOI: 10.1007/s00707-020-02735-2.
  • M. Rambausek, and K. Danas, Bifurcation of magnetorheological film–substrate elastomers subjected to biaxial pre-compression and transverse magnetic fields, Int. J. Non-Linear Mech., vol. 128, pp. 103608, 2021. DOI: 10.1016/j.ijnonlinmec.2020.103608.
  • A. G. Arani, and T. Soleymani, Size-dependent vibration analysis of a rotating MR sandwich beam with varying cross section in supersonic airflow, Int. J. Mech. Sci., vol. 151, pp. 288–299, 2019. DOI: 10.1016/j.ijmecsci.2018.11.024.
  • H. Akhavan, M. Ghadiri, and A. Zajkani, A new model for the cantilever MEMS actuator in magnetorheological elastomer cored sandwich form considering the fringing field and Casimir effects, Mech. Syst. Sig. Process., vol. 121, pp. 551–561, 2019. DOI: 10.1016/j.ymssp.2018.11.046.
  • V. Rashidi, H. R. Mirdamadi, and E. Shirani, A novel model for vibrations of nanotubes conveying nanoflow, Comput. Mater. Sci., vol. 51, no. 1, pp. 347–352, 2012. DOI: 10.1016/j.commatsci.2011.07.030.
  • F. Yang, A. Chong, D. C. C. Lam, and P. Tong, Couple stress based strain gradient theory for elasticity, Int. J. Solids Struct., vol. 39, no. 10, pp. 2731–2743, 2002. DOI: 10.1016/S0020-7683(02)00152-X.
  • S. Ahangar, G. Rezazadeh, R. Shabani, G. Ahmadi, and A. Toloei, On the stability of a microbeam conveying fluid considering modified couple stress theory, Int. J. Mech. Mater. Des., vol. 7, no. 4, pp. 327–342, 2011. DOI: 10.1007/s10999-011-9171-5.
  • M. Mirramezani, and H. R. Mirdamadi, Effects of nonlocal elasticity and Knudsen number on fluid–structure interaction in carbon nanotube conveying fluid, Phys. E., vol. 44, no. 10, pp. 2005–2015, 2012. DOI: 10.1016/j.physe.2012.06.001.
  • L. Wang, H. Liu, Q. Ni, and Y. Wu, Flexural vibrations of microscale pipes conveying fluid by considering the size effects of micro-flow and micro-structure, Int. J. Eng. Sci., vol. 71, pp. 92–101, 2013. DOI: 10.1016/j.ijengsci.2013.06.006.
  • G. Sheng, and X. Wang, Nonlinear vibration of FG beams subjected to parametric and external excitations, Eur. J. Mech.-A/Solids., vol. 71, pp. 224–234, 2018. DOI: 10.1016/j.euromechsol.2018.04.003.
  • M. W. Teng, and Y. Q. Wang, Nonlinear forced vibration of simply supported functionally graded porous nanocomposite thin plates reinforced with graphene platelets, Thin-Walled Struct., vol. 164, pp. 107799, 2021. DOI: 10.1016/j.tws.2021.107799.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.