446
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Analysis of a hollow piezoelectric semiconductor composite cylinder under a thermal loading

, , ORCID Icon, , ORCID Icon & ORCID Icon
Pages 2037-2046 | Received 26 Feb 2022, Accepted 27 Feb 2022, Published online: 12 Mar 2022

References

  • Z.L. Wang, Piezopotenial gated nanowire devices: Piezotronics and piezo-phototronics, Nano Today, vol. 5, no. 6, pp. 540–542, 2010. DOI: 10.1016/j.nantod.2010.10.008.
  • Z.L. Wang, Nanobelts, nanowires, and nanodiskettes of semiconducting oxides-from materials to nanodevices, Adv. Mater., vol. 15, no. 5, pp. 432–436, 2003. DOI: 10.1002/adma.200390100.
  • A.B. Djurisic, X.Y. Chen, Y.H. Leung, and A.M.C. Ng, ZnO nanostructures: Growth, properties and applications, J. Mater. Chem., vol. 22, no. 14, pp. 6526–6535, 2012. DOI: 10.1039/c2jm15548f.
  • B. Kumar and S.W. Kim, Recent advances in power generation through piezoelectric nanogenerators, J. Mater. Chem., vol. 21, no. 47, pp. 18946–18958, 2011. DOI: 10.1039/c1jm13066h.
  • K.Y. Lee, B. Kuma, J.S. Seo, K.H. Kim, J.I. Sohn, S.N. Cha, D. Choi, Z.L. Wang and S.W. Kim, P-type polymer-hybridized high-performance piezoelectric nanogenerators, Nano Lett., vol. 12, no. 4, pp. 1959–1964, 2012. DOI: 10.1021/nl204440g.
  • K.Y. Lee, J. Bae, S.M. Kim, J.H. Lee, G.C. Yoon, M.K. Gupta, S. Kim, H. Kim, J. Park and S.W. Kim, Depletion width engineering via surface modification for high performance semiconductor piezoelectric nanogenerators, Nano Energy, vol. 8, no. 9, pp. 165–173, 2014. DOI: 10.1016/j.nanoen.2014.06.008.
  • U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho and H. Morkoc, A comprehensive review of ZnO materials and devices, J. Appl. Phys., vol. 98, no. 4, pp. 041301, 2005. DOI: 10.1063/1.1992666.
  • R.S. Dahiya, G. Metta, M. Valle, A. Adami, and L. Lorenzelli, Piezoelectric oxide semiconductor field effect transistor touch sensing devices, Appl. Phys. Lett., vol. 95, no. 3, pp. 034105, 2009. DOI: 10.1063/1.3184579.
  • P.X. Gao, J. Song, J. Liu, and Z.L. Wang, Nanowire piezoelectric nanogenerators on plastic substrates as flexible power sources for nanodevices, Adv. Mater., vol. 19, no. 1, pp. 67–72, 2007. DOI: 10.1002/adma.200601162.
  • R. Giuseppe, Piezoelectric potential in vertically aligned nanowires for high output nanogenerators, Nanotechnology, vol. 22, no. 46, pp. 465401, 2011.
  • W. Guo, Y. Yang, J. Liu, and Y. Zhang, Tuning of electronic transport characteristics of ZnO micro/nanowire piezotronic Schottky diodes by bending: Threshold voltage shift, Phys. Chem. Chem. Phys., vol. 12, no. 45, pp. 14868–14872, 2010.
  • S. Fan, Y. Liang, J. Xie, and Y. Hu, Exact solutions to the electromechanical quantities inside a statically-bent circular ZnO nanowire by taking into account both the piezoelectric property and the semiconducting performance: Part I–Linearized analysis, Nano Energy, vol. 40, pp. 82–87, 2017. DOI: 10.1016/j.nanoen.2017.07.049.
  • H. Huang, Z. Qian, and J. Yang, I-V characteristics of a piezoelectric semiconductor nanofiber under local tensile/compressive stress, J. Appl. Phys., vol. 126, no. 16, pp. 164902, 2019. DOI: 10.1063/1.5110876.
  • C.L. Zhang, X.Y. Wang, W.Q. Chen, and J.S. Yang, An analysis of the extension of a ZnO piezoelectric semiconductor nanofiber under an axial force, Smart Mater. Struct., vol. 26, no. 2, pp. 025030, 2017. DOI: 10.1088/1361-665X/aa542e.
  • C.L. Zhang, X.Y. Wang, W.Q. Chen, and J.S. Yang, Bending of a cantilever piezoelectric semiconductor fiber under an end force, Adv. Struct. Mater., vol. 90, pp. 261–278, 2018.
  • X. Dai, F. Zhu, Z. Qian, and J. Yang, Electric potential and carrier distribution in a piezoelectric semiconductor nanowire in time-harmonic bending vibration, Nano Energy, vol. 43, pp. 22–28, 2018. DOI: 10.1016/j.nanoen.2017.11.002.
  • G. Wang, J. Liu, X. Liu, W. Feng, and J. Yang, Extensional vibration characteristics and screening of polarization charges in a ZnO piezoelectric semiconductor nanofiber, J. Appl. Phys., vol. 124, no. 9, pp. 094502, 2018. DOI: 10.1063/1.5048571.
  • W. Yang, Y. Hu, and J. Yang, Transient extensional vibration in a ZnO piezoelectric semiconductor nanofiber under a suddenly applied end force, Mater. Res. Express, vol. 6, no. 2, pp. 025902, 2018. DOI: 10.1088/2053-1591/aaecbb.
  • L. Sun, Z.C. Zhang, C.F. Gao, and C.L. Zhang, Effect of flexoelectricity on piezotronic responses of a piezoelectric semiconductor bilayer, J. Appl. Phys., vol. 129, no. 24, pp. 244102, 2021. DOI: 10.1063/5.0050947.
  • Y.L. Qu, F. Jin, and J.S. Yang, Effects of mechanical fields on mobile charges in a composite beam of flexoelectric dielectrics and semiconductors, J. Appl. Phys., vol. 127, no. 19, pp. 194502, 2020. DOI: 10.1063/5.0005124.
  • K.F. Wang and B.L. Wang, Electrostatic potential in a bent piezoelectric nanowire with consideration of size-dependent piezoelectricity and semiconducting characterization, Nanotechnology, vol. 29, no. 25, pp. 255405, 2018. DOI: 10.1088/1361-6528/aab970.
  • L. Sun, L.F. Zhu, C.L. Zhang, W.Q. Chen, and Z.L. Wang, Mechanical manipulation of silicon-based Schottky diodes via flexoelectricity, Nano Energy, vol. 83, pp. 105855, 2021. DOI: 10.1016/j.nanoen.2021.105855.
  • C. Gu and F. Jin, Shear-horizontal surface waves in a half-space of piezoelectric semiconductors, Philos. Mag. Lett., vol. 95, no. 2, pp. 92–100, 2015. DOI: 10.1080/09500839.2015.1011249.
  • F. Jiao, P. Wei, X. Zhou, and Y. Zhou, The dispersion and attenuation of the multi-physical fields coupled waves in a piezoelectric semiconductor, Ultrasonics, vol. 92, pp. 68–78, 2019. DOI: 10.1016/j.ultras.2018.09.009.
  • R. Tian, J. Liu, E. Pan, Y. Wang, and A.K. Soh, Some characteristics of elastic waves in a piezoelectric semiconductor plate, J. Appl. Phys., vol. 126, no. 12, pp. 125701, 2019. DOI: 10.1063/1.5116662.
  • M. Zhao, Y. Pan, C. Fan, and G. Xu, Extended displacement discontinuity method for analysis of cracks in 2D piezoelectric semiconductors, Int. J. Solids. Struct., vol. 94–95, pp. 50–59, 2016. DOI: 10.1016/j.ijsolstr.2016.05.009.
  • Y. Zhao, C. Zhou, M. Zhao, E. Pan, and C. Fan, Penny-shaped cracks in three-dimensional piezoelectric semiconductors via Green’s functions of extended displacement discontinuity, J. Intell. Mater. Syst. Struct., vol. 28, no. 13, pp. 1775–1788, 2017. DOI: 10.1177/1045389X16679294.
  • R.R. Cheng, C.L. Zhang, and J.S. Yang, Thermally induced carrier distribution in a piezoelectric semiconductor fiber, J. Electron. Mater., vol. 48, no. 8, pp. 4939–4946, 2019. DOI: 10.1007/s11664-019-07280-w.
  • R.R. Cheng, C.L. Zhang, W.Q. Chen, and J.S. Yang, Temperature effects on PN junctions in piezoelectric semiconductor fibers with thermoelastic and pyroelectric couplings, J. Electron. Mater., vol. 49, no. 5, pp. 3140–3148, 2020. DOI: 10.1007/s11664-020-08026-9.
  • R.R. Cheng, C.L. Zhang, W.Q. Chen, and J.S. Yang, Electrical behaviors of a piezoelectric semiconductor fiber under a local temperature change, Nano Energy, vol. 66, pp. 104081, 2019. DOI: 10.1016/j.nanoen.2019.104081.
  • S.W. Choi, J.Y. Park, and S.S. Kim, Synthesis of SnO2–ZnO core–shell nanofibers via a novel two-step process and their gas sensing properties, Nanotechnology, vol. 20, no. 46, pp. 465603, 2009. DOI: 10.1088/0957-4484/20/46/465603.
  • K. Varaprasad, M.M. Yallapu, D. Nunez, P. Oyarzum, M. Lopez, T. Jayaramudu and C. Karthikeyan, Generation of engineered core-shell antibiotic nanoparticles, RSC Adv., vol. 9, no. 15, pp. 8326–8332, 2019. DOI: 10.1039/c9ra00536f.
  • B.A. Auld, Acoustic Fields and Waves in Solids, Wiley, New York, 1973.
  • R.F. Pierret, Semiconductor Device Fundamentals, Reading, Addison-Wesley, Reading Massachusetts, 1996.
  • W.Q. Chen, Y.Y. Zhou, C.F. Lü, and H.J. Ding, Bending of multiferroic laminated rectangular plates with imperfect interlaminar bonding, Eur. J. Mech. A/Solids, vol. 28, no. 4, pp. 720–727, 2009. DOI: 10.1016/j.euromechsol.2009.02.008.
  • T. Frerich, C. Brauner, J. Jendrny, and A. Hermann, Modeling the influence of interleaf layers in composite materials on elastic properties, thermal expansion, and chemical shrinkage, J. Compos. Mater., vol. 53, no. 17, pp. 1–14, 2019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.