363
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Analysis of spring-in of U-shaped composite parts with drop-off plies by FEA-RSM

, , , & ORCID Icon
Pages 2047-2063 | Received 21 Oct 2021, Accepted 28 Feb 2022, Published online: 11 Mar 2022

References

  • N. Shetty, S. Shahabaz, S. Sharma, and S.D. Shetty, A review on finite element method for machining of composite materials, Compos. Struct., vol. 176, pp. 790–802, 2017. DOI: 10.1016/j.compstruct.2017.06.012.
  • B. Wucher, F. Lani, T. Pardoen, C. Bailly, and P. Martiny, Tooling geometry optimization for compensation of cure-induced distortions of a curved carbon/epoxy C-spar, Compos. A Appl. Sci. Manuf., vol. 56, pp. 27–35, 2014. DOI: 10.1016/j.compositesa.2013.09.010.
  • E. Kappel, D. Stefaniak, and C. Hühne, Process distortions in prepreg manufacturing - an experimental study on CFRP L-profiles, Compos. Struct., vol. 106, pp. 615–625, 2013. DOI: 10.1016/j.compstruct.2013.07.020.
  • C. Barile, C. Casavola, and F.D. Cillis, Mechanical comparison of new composite materials for aerospace applications, Compos. B Eng., vol. 162, pp. 122–128, 2019. DOI: 10.1016/j.compositesb.2018.10.101.
  • E. Kappel, Distortions of composite aerospace frames due to processing, thermal loads and trimming operations and an assessment from an assembly perspective, Compos. Struct., vol. 220, pp. 338–346, 2019. DOI: 10.1016/j.compstruct.2019.03.099.
  • E. Kappel, D. Stefaniak, D. Holzhüter, C. Hühne, and M. Sinapius, Manufacturing distortions of a CFRP box-structure-a semi-numerical prediction approach, Compos. A Appl. Sci. Manuf., vol. 51, pp. 89–98, 2013. DOI: 10.1016/j.compositesa.2013.04.003.
  • A.R.A. Arafath, R. Vaziri, and A. Poursartip, Closed-form solution for process-induced stresses and deformation of a composite part cured on a solid tool: part I -Flat geometries, Compos. A Appl. Sci. Manuf., vol. 39, no. 7, pp. 1106–1117, 2008. DOI: 10.1016/j.compositesa.2008.04.009.
  • D.W. Radford, and T.S. Rennick, Separating sources of manufacturing distortion in laminated composites, J. Reinf. Plast. Compos., vol. 19, no. 8, pp. 621–641, 2000. DOI: 10.1177/073168440001900802.
  • C. Bellini, and L. Sorrentino, Analysis of cure induced deformation of CFRP U-shaped laminates, Compos. Struct., vol. 197, pp. 1–9, 2018. DOI: 10.1016/j.compstruct.2018.05.038.
  • C. Bellini, L. Sorrentino, W. Polini, and A. Corrado, Spring-in analysis of CFRP thin laminates: numerical and experimental results, Compos. Struct., vol. 173, pp. 17–24, 2017. DOI: 10.1016/j.compstruct.2017.03.105.
  • A. Ding, S. Li, J. Wang, A. Ni, L. Sun, and L. Chang, Prediction of process-induced distortions in L-Shaped composite profiles using path-dependent constitutive Law, Appl. Compos. Mater., vol. 23, no. 5, pp. 1027–1019, 2016. DOI: 10.1007/s10443-016-9501-8.
  • M.R. Wisnom, M. Gigliotti, N. Ersoy, M. Campbell, and K.D. Potter, Mechanisms generating residual stresses and distortion during manufacture of polymer-matrix composite structures, Compos. A Appl. Sci. Manuf., vol. 37, no. 4, pp. 522–529, 2006. DOI: 10.1016/j.compositesa.2005.05.019.
  • K. Takagaki, S. Minakuchi, and N. Takeda, Process-induced strain and distortion in curved composites. Part II: parametric study and application, Compos. A Appl. Sci. Manuf., vol. 103, pp. 219–229, 2017. DOI: 10.1016/j.compositesa.2017.09.019.
  • A. Mosallanezhad, and A. Kalantariasl, Performance prediction of ion-engineered water injection (EWI) in chalk reservoirs using Response Surface Methodology (RSM), Energy Rep., vol. 7, pp. 2916–2929, 2021. DOI: 10.1016/j.egyr.2021.05.012.
  • S.L. Zhang, Z.X. Zhang, K. Pal, Z.X. Xin, J. Suh, and J.K. Kim, Prediction of mechanical properties of waste polypropylene/waste ground rubber tire powder blends using artificial neural networks, Mater. Design., vol. 31, no. 8, pp. 3624–3629, 2010. DOI: 10.1016/j.matdes.2010.02.039.
  • M.A. Alam, H.H.Ya, M. Azeem, P. Hussain, M.S. Salit, R. Khan, S. Arif, A.H. Ansari, Modelling and optimisation of hardness behaviour of sintered Al/SiC composites using RSM and ANN: a comparative study, J. Mater. Res. Technol., vol. 9, no. 6, pp. 14036–14050, 2020. DOI: 10.1016/j.jmrt.2020.09.087.
  • A. Bigdeli, and M. Damghani Nouri, Experimental and numerical analysis and multi-objective optimization of quasi-static compressive test on thin-walled cylindrical with internal networking, Mech. Adv. Mater. Struct., vol. 26, no. 19, pp. 1644–1660, 2019. DOI: 10.1080/15376494.2018.1444231.
  • A. Miranda de Souza, et al., Application of the desirability function for the development of new composite eco-efficiency indicators for concrete, J. Build. Eng., vol. 40, pp. 102374, 2021. DOI: 10.1016/j.jobe.2021.102374.
  • D. Garcia, I. Arostegui, and R. Prellezo, Robust combination of the Morris and Sobol methods in complex multidimensional models, Environ. Modell. Softw., vol. 122, pp. 104517, 2019. DOI: 10.1016/j.envsoft.2019.104517.
  • Y. Fan, C. Liu, and J. Wang, Prediction algorithm for springback of frame-rib parts in rubber forming process by incorporating Sobol within improved grey relation analysis, J. Mater. Res. Technol., vol. 13, pp. 1955–1966, 2021. DOI: 10.1016/j.jmrt.2021.05.102.
  • S. Blanco, H. You, T.W. Kerekes, and G.J. Yun, Cure-induced residual stress buildup and distortions of CFRP laminates with stochastic thermo-chemical and viscoelastic models: experimental verifications, Mech. Adv. Mater. Struct., vol. 22, pp. 1–17, 2021. DOI: 10.1080/15376494.2021.1877376.
  • D.B. Shah, K.M. Patel, A.I. Patel, V. Pariyal, and S.J. Joshi, Experimental investigation on spring-back deformation during autoclave curing of parabolic antenna reflectors, Compos. A Appl. Sci. Manuf., vol. 115, pp. 134–146, 2018. DOI: 10.1016/j.compositesa.2018.09.017.
  • W. Chen, and D. Zhang, A micromechanics-based processing model for predicting residual stress in fiber-reinforced polymer matrix composites, Compos. Struct., vol. 204, pp. 153–166, 2018. DOI: 10.1016/j.compstruct.2018.07.016.
  • W. Chen, and D. Zhang, Improved prediction of residual stress induced warpage in thermoset composites using a multiscale thermo-viscoelastic processing model, Compos. A Appl. Sci. Manuf., vol. 5, no. 6, pp. 11–21, 2019.
  • R.J. Stango, and S.S. Wang, Process-induced residual thermal stresses in advanced fiber-reinforced composite laminates, J. Eng. Ind., vol. 106, no. 1, pp. 48–54, 1984.
  • I. Baran, C.C. Tutum, M.W. Nielsen, and J.H. Hattel, Process induced residual stresses and distortions in pultrusion, Compo. B Eng., vol. 51, pp. 148–161, 2013. DOI: 10.1016/j.compositesb.2013.03.031.
  • T.A. Bogetti, and J.W. Gillespie, Process-induced stress and deformation in thick-section thermoset composite laminates, J. Compos. Mater., vol. 26, no. 5, pp. 626–660, 1992. DOI: 10.1177/002199839202600502.
  • M.A. Zocher, S.E. Groves, and D.H. Allen, A three-dimensional finite element formulation for thermo viscoelastic orthotropic media, Int. J. Numer. Meth. Eng., vol. 40, no. 12, pp. 2267–2288, 1997. DOI: 10.1002/(SICI)1097-0207(19970630)40:12<2267::AID-NME156>3.0.CO;2-P.
  • A. Ding, S. Li, J. Sun, J. Wang, and L. Zu, A thermo-viscoelastic model of process-induced residual stresses in composite structures with considering thermal dependence, Compos. Struct., vol. 136, pp. 34–43, 2016. DOI: 10.1016/j.compstruct.2015.09.014.
  • K. Yeong, and R. Scott, Stress relaxation behavior of 3501-6 epoxy resin during cure, Polym. Eng. Sci., vol. 36, no. 23, pp. 2852–2862, 1996.
  • J.M. Svanberg, and J.A. Holmberg, Prediction of shape distortions Part I. FE-implementation of a path dependent constitutive model, Compos. A Appl. Sci. Manuf., vol. 35, no. 6, pp. 711–721, 2004.
  • N. Ersoy, T. Garstka, K. Potter, M.R. Wisnom, D. Porter, and G. Stringer, Modelling of the spring-in phenomenon in curved parts made of a thermosetting composite, Compos. A Appl. Sci. Manuf., vol. 41, no. 3, pp. 410–418, 2010. DOI: 10.1016/j.compositesa.2009.11.008.
  • Z. Yuan, Y. Wang, X. Peng, J. Wang, and S. Wei, An analytical model on through thickness stresses and warpage of composite laminates due to tool-part interaction, Compos. B Eng., vol. 91, pp. 408–413, 2016. DOI: 10.1016/j.compositesb.2016.01.016.
  • I. Baran, K. Cinar, N. Ersoy, R. Akkerman, and J.H. Hattel, A review on the mechanical modeling of composite manufacturing processes, Arch. Comput. Methods Eng., vol. 24, no. 2, pp. 365–395, 2017. DOI: 10.1007/s11831-016-9167-2.
  • M.R. Wisnom, K.D. Potter, and N. Ersoy, Shear-lag analysis of the effect of thickness on spring-in of curved composites, J. Compos. Mater., vol. 41, no. 11, pp. 1311–1324, 2007. DOI: 10.1177/0021998306068072.
  • K. Çinar, and N. Ersoy, Effect of fibre wrinkling to the spring-in behaviour of L-shaped composite materials, Compos. A Appl. Sci. Manuf., vol. 69, pp. 105–114, 2015. DOI: 10.1016/j.compositesa.2014.10.025.
  • K. Çınar, U.E. Öztürk, N. Ersoy, and M.R. Wisnom, Modelling manufacturing deformations in corner sections made of composite materials, J. Compos. Mater., vol. 48, no. 7, pp. 799–813, 2014. DOI: 10.1177/0021998313477896.
  • W. Liu, Q. Liu, F. Ruan, Z. Liang, and H. Qiu, Springback prediction for sheet metal forming based on GA-ANN technology, J. Mater. Process Tech., vol. 187-188, no. 1, pp. 227–231, 2007. DOI: 10.1016/j.jmatprotec.2006.11.087.
  • L. Luo, B. Zhang, G. Zhang, and Y. Xu, Rapid prediction of cured shape types of composite laminates using a FEA-ANN method, Compos. Struct., vol. 238, pp. 111980, 2020. DOI: 10.1016/j.compstruct.2020.111980.
  • A. Johnston, R. Vaziri, and A. Poursartip, A plane strain model for process-induced deformation of laminated composite structures, J. Compos. Mater., vol. 35, no. 16, pp. 1435–1469, 2001. DOI: 10.1106/YXEA-5MH9-76J5-BACK.
  • N. Ersoy, K. Potter, M.R. Wisnom, and M.J. Clegg, Development of spring-in angle during cure of a thermosetting composite, Compos. A Appl. Sci. Manuf., vol. 36, no. 12, pp. 1700–1706, 2005. DOI: 10.1016/j.compositesa.2005.02.013.
  • X. Hui, Y. Xu, and W. Zhang, An integrated modeling of the curing process and transverse tensile damage of unidirectional CFRP composites, Compos. Struct., vol. 263, no. 5, pp. 113681, 2021. DOI: 10.1016/j.compstruct.2021.113681.
  • T. Garstka, N. Ersoy, K.D. Potter, and M.R. Wisnom, In situ measurements of through-the-thickness strains during processing of AS4/8552 composite, Compos. A Appl. Sci. Manuf., vol. 38, no. 12, pp. 2517–2526, 2007. DOI: 10.1016/j.compositesa.2007.07.018.
  • N. Ersoy, K. Potter, M.R. Wisnom, and M.J. Clegg, An experimental method to study the frictional processes during composites manufacturing, Compos. A Appl. Sci. Manuf., vol. 36, no. 11, pp. 1536–1544, 2005. DOI: 10.1016/j.compositesa.2005.02.010.
  • J. Svanberg, and J. Holmberg, Prediction of shape distortions part II. experimental validation and analysis of boundary conditions, Compos. A Appl. Sci. Manuf., vol. 35, no. 6, pp. 723–734, 2004. DOI: 10.1016/j.compositesa.2004.02.006.
  • G. Twigg, A. Poursartip, and G. Fernlund, Tool–part interaction in composites processing. Part I: experimental investigation and analytical model, Compos. A Appl. Sci. Manuf., vol. 35, no. 1, pp. 121–133, 2004. DOI: 10.1016/S1359-835X(03)00131-3.
  • X. Li, J. Wang, S. Li, and A. Ding, Cure-induced temperature gradient in laminated composite plate: numerical simulation and experimental measurement, Compos. Struct., vol. 253, pp. 112822, 2020. DOI: 10.1016/j.compstruct.2020.112822.
  • C. Liu, Z. Zhao, X. Zhang, and J. Wang, A progressive approach to predict shot peening process parameters for forming integral panel of Al7050-T7451, Chin. J. Aeronaut., vol. 34, no. 5, pp. 617–627, 2021. DOI: 10.1016/j.cja.2020.08.027.
  • H. Wang, J. Zhou, T.S. Zhao, and Y.P. Tao, Springback compensation of automotive panel based on three-dimensional scanning and reverse engineering, Int. J. Adv. Manuf. Technol., vol. 85, no. 5–8, pp. 1187–1193, 2016. DOI: 10.1007/s00170-015-8042-x.
  • P. Kang, Q. Zhao, S. Guo, W. Xue, H. Liu, Z. Chao, L. Jiang, G. Wu, Optimisation of the spark plasma sintering process for high volume fraction SiCp/Al composites by orthogonal experimental design, Ceram Int., vol. 47, no. 3, pp. 3816–3825, 2021. DOI: 10.1016/j.ceramint.2020.09.240.
  • D.C. Montgomery, Design and Analysis of Experiments, Wiley, New York, NY, 2001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.