180
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

How complex viscoelastic behaviors within a viscoelastic three-layer structure affect the measurement accuracy of ultrasound viscoelastic creep imaging

&
Pages 2064-2086 | Received 21 Jun 2021, Accepted 02 Mar 2022, Published online: 15 Mar 2022

References

  • C.X. Deng, X. Hong, and J.P. Stegemann, Ultrasound imaging techniques for spatiotemporal characterization of composition, microstructure, and mechanical properties in tissue engineering, Tissue Eng. Part B Rev., vol. 22, no. 4, pp. 311–321, 2016.
  • C.Y. Lin, Alternative form of standard linear solid model for characterizing stress relaxation and creep: Including a novel parameter for quantifying the ratio of fluids to solids of a viscoelastic solid, FrMat, vol. 7, p. 11, 2020a.
  • C.Y. Lin, Ramp-creep ultrasound viscoelastography for measuring viscoelastic parameters of materials, Materials, vol. 13, no. 16, p. 3593, 2020b. DOI: 10.3390/ma13163593.
  • R.J. O’Keefe, C.R. Chu, J.J. Jacobs, and T.A. Einhorn, Orthopaedic Basic Science: Foundations of Clinical Practice, 4th Edition, American Academy of Orthopaedic Surgeons, Rosemont, USA, 2013.
  • W.N. Findley, J.S. Lai, and K. Onaran, Creep and Relaxation of Nonlinear Viscoelastic Materials, North-Holland Publishing Company, Amsterdam, Holland, 1976.
  • Y.C. Fung, Mechanical Properties of Living Tissues, Springer, New York, NY, USA, 1981.
  • X. Hong, R.T. Annamalai, T.S. Kemerer, C.X. Deng, and J.P. Stegemann, Multimode ultrasound viscoelastography for three-dimensional interrogation of microscale mechanical properties in heterogeneous biomaterials, Biomaterials, vol. 178, pp. 11–22, 2018.
  • X. Hong, J.P. Stegemann, and C.X. Deng, Microscale characterization of the viscoelastic properties of hydrogel biomaterials using dual-mode ultrasound elastography, Biomaterials, vol. 88, pp. 12–24, 2016.
  • L.E. Bilston, Soft tissue rheology and its implications for elastography: Challenges and opportunities, NMR Biomed., vol. 31, no. 10, p. e3832, 2018. DOI: 10.1002/nbm.3832.
  • D.S. Gianola and C. Eberl, Micro-and nanoscale tensile testing of materials, JOM, vol. 61, no. 3, pp. 24–35, 2009. DOI: 10.1007/s11837-009-0037-3.
  • X. Nie, B. Song, Y. Ge, W.W. Chen, and T. Weerasooriya, Dynamic tensile testing of soft materials, Exp. Mech., vol. 49, no. 4, pp. 451–458, 2009. DOI: 10.1007/s11340-008-9133-5.
  • A. Karimi and M. Navidbakhsh, Material properties in unconfined compression of gelatin hydrogel for skin tissue engineering applications, Biomed. Eng./Biomed. Tech., vol. 59, no. 6, pp. 479–486, 2014.
  • Z. Wang, A.A. Volinsky, and N.D. Gallant, Crosslinking effect on polydimethylsiloxane elastic modulus measured by custombuilt compression instrument, J. Appl. Polym. Sci., vol. 131, no. 22, p. 41050, 2014. DOI: 10.1002/app.41050
  • D. Qvale and K. Ravi-Chandar, Viscoelastic characterization of polymers under multiaxial compression, Mech. Time-Depend. Mater., vol. 8, no. 3, pp. 193–214, 2004. DOI: 10.1023/B:MTDM.0000046749.79406.f5.
  • G. Sommer, et al., Multiaxial mechanical properties and constitutive modeling of human adipose tissue: A basis for preoperative simulations in plastic and reconstructive surgery, Acta Biomater., vol. 9, no. 11, pp. 9036–9048, 2013. DOI: 10.1016/j.actbio.2013.06.011.
  • D.T. Chen, Q. Wen, P.A. Janmey, J.C. Crocker, and A.G. Yodh, Rheology of soft materials, Annu. Rev. Condens. Matter Phys., vol. 1, no. 1, pp. 301–322, 2010. DOI: 10.1146/annurev-conmatphys-070909-104120.
  • D.M. Knapp, V.H. Barocas, A.G. Moon, K. Yoo, L.R. Petzold, and R.T. Tranquillo, Rheology of reconstituted type I collagen gel in confined compression, J. Rheol., vol. 41, no. 5, pp. 971–993, 1997. DOI: 10.1122/1.550817.
  • J.L. Vanderhooft, M. Alcoutlabi, J.J. Magda, and G.D. Prestwich, Rheological properties of cross‐linked hyaluronan–gelatin hydrogels for tissue engineering, Macromol. Biosci., vol. 9, no. 1, pp. 20–28, 2009.
  • J.C. Merino, B. Martin, and J.M. Pastor, Mechanical indentation tester designed to control and measure in real time the microhardness process, Meas. Sci. Technol., vol. 2, no. 8, pp. 740–743, 1991. DOI: 10.1088/0957-0233/2/8/006.
  • R.A. Mirshams and R.M. Pothapragada, Correlation of nanoindentation measurements of nickel made using geometrically different indenter tips, Acta Mater., vol. 54, no. 4, pp. 1123–1134, 2006. DOI: 10.1016/j.actamat.2005.10.048.
  • Y.K. Mariappan, K.J. Glaser, and R.L. Ehman, Magnetic resonance elastography: A review, Clin. Anat., vol. 23, no. 5, pp. 497–511, 2010.
  • R.M. Sigrist, J. Liau, A. El Kaffas, M.C. Chammas, and J.K. Willmann, Ultrasound elastography: Review of techniques and clinical applications, Theranostics, vol. 7, no. 5, pp. 1303–1329, 2017.
  • C.A. Carrascal, Viscoelastic Creep Imaging. In: Ultrasound Elastography for Biomedical Applications and Medicine, pp. 171–188, John Wiley & Sons, West Sussex, UK, 2018.
  • C. Amador, M.W. Urban, S. Chen, and J.F. Greenleaf, Loss tangent and complex modulus estimated by acoustic radiation force creep and shear wave dispersion, Phys. Med. Biol., vol. 57, no. 5, pp. 1263–1282, 2012. DOI: 10.1088/0031-9155/57/5/1263.
  • M. Bayat, et al., Automated in vivo sub-Hertz analysis of viscoelasticity (SAVE) for evaluation of breast lesions, IEEE Trans. Biomed. Eng., vol. 65, no. 10, pp. 2237–2247, 2018. DOI: 10.1109/TBME.2017.2787679.
  • M. Bayat, et al., Multi-parameter sub-Hertz analysis of viscoelasticity with a quality metric for differentiation of breast masses, Ultrasound Med. Biol., vol. 46, no. 12, pp. 3393–3403, 2020. DOI: 10.1016/j.ultrasmedbio.2020.08.004.
  • C.A. Carrascal, S. Chen, M.W. Urban, and J.F. Greenleaf, Acoustic radiation force-induced creep–recovery (ARFICR): A noninvasive method to characterize tissue viscoelasticity, IEEE Trans. Ultrason, Ferroelect, Freq. Control, vol. 65, no. 1, pp. 3–13, 2018. DOI: 10.1109/TUFFC.2017.2768184.
  • M.M. Hossain and C.M. Gallippi, Viscoelastic response ultrasound derived relative elasticity and relative viscosity reflect true elasticity and viscosity: In silico and experimental demonstration, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 67, no. 6, pp. 1102–1117, 2020.
  • M.M. Hossain, et al., Evaluating renal transplant status using viscoelastic response (VisR) ultrasound, Ultrasound Med. Biol., vol. 44, no. 8, pp. 1573–1584, 2018. DOI: 10.1016/j.ultrasmedbio.2018.03.016.
  • F.W. Mauldin, et al., Monitored steady-state excitation and recovery (MSSR) radiation force imaging using viscoelastic models, IEEE Trans. Ultrason, Ferroelect, Freq. Control., vol. 55, no. 7, pp. 1597–1610, 2008. DOI: 10.1109/TUFFC.2008.836.
  • C.J. Moore, et al., In vivo viscoelastic response (VisR) ultrasound for characterizing mechanical anisotropy in lower-limb skeletal muscles of boys with and without Duchenne muscular dystrophy, Ultrasound Med Biol., vol. 44, no. 12, pp. 2519–2530, 2018. DOI: 10.1016/j.ultrasmedbio.2018.07.004.
  • A. Nabavizadeh, et al., Automated compression device for viscoelasticity imaging, IEEE Trans. Biomed. Eng., vol. 64, no. 7, pp. 1535–1546, 2017.
  • M.R. Selzo and C.M. Gallippi, Viscoelastic response (VisR) imaging for assessment of viscoelasticity in voigt materials, IEEE Trans. Ultrason, Ferroelect, Freq. Control, vol. 60, no. 12, pp. 2488–2500, 2013. DOI: 10.1109/TUFFC.2013.2848.
  • M.R. Selzo, C.J. Moore, M.M. Hossain, M.L. Palmeri, and C.M. Gallippi, On the quantitative potential of viscoelastic response (VisR) ultrasound using the one-dimensional mass-spring-damper model, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 63, no. 9, pp. 1276–1287, 2016.
  • M. Sridhar, J. Liu, and M.F. Insana, Viscoelasticity imaging using ultrasound: Parameters and error analysis, Phys. Med. Biol., vol. 52, no. 9, pp. 2425–2443, 2007. DOI: 10.1088/0031-9155/52/9/007.
  • F. Viola and W.F. Walker, Radiation force imaging of viscoelastic properties with reduced artifacts, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 50, no. 6, pp. 736–742, 2003.
  • W.F. Walker, F.J. Fernandez, and L.A. Negron, A method of imaging viscoelastic parameters with acoustic radiation force, Phys. Med. Biol., vol. 45, no. 6, pp. 1437–1447, 2000. DOI: 10.1088/0031-9155/45/6/303.
  • C.Y. Lin and S.R. Lin, Investigating the accuracy of ultrasound viscoelastic creep imaging for measuring the viscoelastic properties of a single-inclusion phantom, Int. J. Mech. Sci., vol. 199, p. 106409, 2021. DOI: 10.1016/j.ijmecsci.2021.106409.
  • A. Karimi, M. Navidbakhsh, and R. Razaghi, Plaque and arterial vulnerability investigation in a three-layer atherosclerotic human coronary artery using computational fluid-structure interaction method, J. Appl. Phys., vol. 116, no. 6, p. 064701, 2014. DOI: 10.1063/1.4893368.
  • K. Liu, et al., A bio-inspired high strength three-layer nanofiber vascular graft with structure guided cell growth, J. Mater. Chem. B, vol. 5, no. 20, pp. 3758–3764, 2017.
  • P.E. Andersen, J.S. Dam, P.M. Petersen, and P. Bjerring, Local diffuse reflectance from three-layered skin tissue structures. In: Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, Vol. 2979, pp. 515–526, International Society for Optics and Photonics, Bellingham, WA, USA, 1997.
  • I.M. Cârstea and I. Carstea, Computational aspects in numerical simulation of skin tissues, In Proceedings of the 3rd WSEAS International Conference on Finite Differences-Finite Elements-Finite Volumes-Boundary Elements, April, 2010, pp. 34–40.
  • T. Strömberg, H. Karlsson, I. Fredriksson, and M. Larsson, Experimental results using a three-layer skin model for diffuse reflectance spectroscopy. In: Optical Tomography and Spectroscopy of Tissue X, Vol. 8578. International Society for Optics and Photonics, 2013, p. 857834, March. DOI: 10.1117/12.2014323.
  • J. Lyu, et al., A microfluidics-derived growth factor gradient in a scaffold regulates stem cell activities for tendon-to-bone interface healing, Biomater. Sci., vol. 8, no. 13, pp. 3649–3663, 2020. DOI: 10.1039/D0BM00229A.
  • S.H. Heo, C. Kim, T.S. Kim, and H.S. Park, Human‐palm‐inspired artificial skin material enhances operational functionality of hand manipulation, Adv. Funct. Mater., vol. 30, no. 25, p. 2002360, 2020. DOI: 10.1002/adfm.202002360.
  • Q. Hu, et al., Designed and fabrication of triple-layered vascular scaffold with microchannels, J. Biomater. Sci. Polym. Ed., vol. 32, no. 6, pp. 714–734, 2021. DOI: 10.1080/09205063.2020.1864083.
  • E. Kon, G. Filardo, F. Perdisa, G. Venieri, and M. Marcacci, Clinical results of multilayered biomaterials for osteochondral regeneration, J. Exp. Ortop., vol. 1, no. 1, pp. 1–8, 2014. DOI: 10.1186/s40634-014-0010-0.
  • Y. Wang, et al. , Biomimetic fibroblast-loaded artificial dermis with “sandwich” structure and designed gradient pore sizes promotes wound healing by favoring granulation tissue formation and wound re-epithelialization, Acta Biomater., vol. 30, pp. 246–257, 2016. DOI: 10.1016/j.actbio.2015.11.035.
  • B. Grigolo, et al., Novel nano-composite biomimetic biomaterial allows chondrogenic and osteogenic differentiation of bone marrow concentrate derived cells, J. Mater. Sci. Mater. Med., vol. 26, no. 4, p. 173, 2015.
  • C. Manferdini, et al., Specific inductive potential of a novel nanocomposite biomimetic biomaterial for osteochondral tissue regeneration, J. Tissue Eng. Regen. Med., vol. 10, no. 5, pp. 374–391, 2016.
  • L.H. Nguyen, A.K. Kudva, N.S. Saxena, and K. Roy, Engineering articular cartilage with spatially-varying matrix composition and mechanical properties from a single stem cell population using a multi-layered hydrogel, Biomaterials, vol. 32, no. 29, pp. 6946–6952, 2011. DOI: 10.1016/j.biomaterials.2011.06.014.
  • H. You, et al., Biocompatibility and resorption pattern of newly developed hyaluronic acid hydrogel reinforced three-layer poly (lactide-co-glycolide) membrane: Histologic observation in rabbit calvarial defect model, Biomater. Res., vol. 18, no. 1, pp. 12–17, 2014. DOI: 10.1186/2055-7124-18-12.
  • D. Sheet, Pseudo B-mode ultrasound image simulator. Available from https://www.mathworks.com/matlabcentral/fileexchange/34199-pseudo-b-mode-ultrasound-image-simulator), MATLAB Central File Exchange. Accessed September 27, 2021.
  • J.C. Bamber and R.J. Dickinson, Ultrasonic B-scanning: A computer simulation, Phys. Med. Biol., vol. 25, no. 3, pp. 463–479, 1980. DOI: 10.1088/0031-9155/25/3/006.
  • P.N. Wells and H.D. Liang, Medical ultrasound: Imaging of soft tissue strain and elasticity, J. R. Soc. Interface, vol. 8, no. 64, pp. 1521–1549, 2011. DOI: 10.1098/rsif.2011.0054.
  • M.M. Hossain and C.M. Gallippi, Electronic point spread function rotation using a three-row transducer for ARFI-based elastic anisotropy assessment: In silico and experimental demonstration, IEEE Trans. Ultrason, Ferroelect, Freq. Control, vol. 68, no. 3, pp. 632–646, 2021. DOI: 10.1109/TUFFC.2020.3019002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.