428
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Experimental and numerical investigation of sheet metal failure based on Johnson-Cook model and Erichsen test over a wide range of temperatures

, , , , , & ORCID Icon show all
Pages 2087-2100 | Received 20 Sep 2021, Accepted 02 Mar 2022, Published online: 23 Mar 2022

References

  • A. E. Tekkaya, P. O. Bouchard, S. Bruschi, and C. C. Tasan, Damage in metal forming, CIRP Ann., vol. 69, no. 2, pp. 600–623, 2020. DOI: 10.1016/j.cirp.2020.05.005.
  • F. Abbassi, F. Ahmad, S. Gulzar, T. Belhadj, A. Karrech, and H. S. Choi, Design of T-shaped tube hydroforming using finite element and artificial neural network modeling, J. Mech. Sci. Technol., vol. 34, no. 3, pp. 1129–1138, 2020. DOI: 10.1007/s12206-020-0214-4.
  • A. L. Gurson, Porous rigid-plastic materials containing rigid inclusions—yield function, plastic potential, and void nucleation, in: D.M.R. Taplin (Ed.) The Physical Metallurgy of Fracture. Pergamon: Oxford, UK, 1978. pp. 357–364
  • G. R. Johnson, and W. H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Eng. Fract. Mech., vol. 21, no. 1, pp. 31–48, 1985. DOI: 10.1016/0013-7944(85)90052-9.
  • Y. Cao, Y. Zhen, M. Song, H. Yi, F. Li, and X. Li, Determination of Johnson–Cook parameters and evaluation of Charpy impact test performance for X80 pipeline steel, Int. J. Mech. Sci., vol. 179, pp. 105627, 2020. DOI: 10.1016/j.ijmecsci.2020.105627.
  • L. Xue, X. Ling, and S. Yang, Mechanical behaviour and strain rate sensitivity analysis of TA2 by the small punch test, Theor. Appl. Fract. Mech., vol. 99, pp. 9–17, 2019. DOI: 10.1016/j.tafmec.2018.11.002.
  • A. Saxena, A. Kumaraswamy, S. P. Dwivedi, A. K. Srivastava, and N. K. Maurya, Experimental and computational investigation on dynamic fracture toughness (J1d) behavior of multi-pass SMA armor steel weldments, Theor. Appl. Fract. Mech., vol. 106, pp. 102502, 2020. DOI: 10.1016/j.tafmec.2020.102502.
  • G. Li, and S. Cui, Grain modeling and finite element simulation of damage evolution for AA5182-O aluminum alloy sheet, J. Mater. Res. Technol., vol. 9, no. 5, pp. 10559–10575, 2020. DOI: 10.1016/j.jmrt.2020.07.089.
  • F. Abbassi, T. Belhadj, S. Mistou, and A. Zghal, Parameter identification of a mechanical ductile damage using Artificial Neural Networks in sheet metal forming, Mater. Design, vol. 45, pp. 605–615, 2013. DOI: 10.1016/j.matdes.2012.09.032.
  • F. Abbassi, O. Pantalé, S. Mistou, A. Zghal, and R. Rakotomalala, Effect of Ductile Damage Evolution in Sheet Metal Forming: Experimental and Numerical Investigations, KEM, vol. 446, pp. 157–169, 2010. DOI: 10.4028/www.scientific.net/KEM.446.157.
  • F. Abbassi, M. Srinivasan, C. Loganathan, R. Narayanasamy, and M. Gupta, Experimental and numerical analyses of magnesium alloy hot workability, J. Magnesium Alloys, vol. 4, no. 4, pp. 295–301, 2016. DOI: 10.1016/j.jma.2016.10.004.
  • R. H. J. Peerlings, H. R. Javani, J. Mediavilla, and M. G. D. Geers, Modelling of damage initiation and propagation in metal forming, Int. J. Mater. Form., vol. 1, NO. S1, pp. 1123–1126, 2008. DOI: 10.1007/s12289-008-0177-y.
  • S. Toros, F. Ozturk, and I. Kacar, Review of warm forming of aluminum–magnesium alloys, J. Mater. Process. Technol., vol. 207, no. 1–3, pp. 1–12, 2008. DOI: 10.1016/j.jmatprotec.2008.03.057.
  • D. Ghaffari Tari, M. J. Worswick, and S. Winkler, Experimental studies of deep drawing of AZ31B magnesium alloy sheet under various thermal conditions, J. Mater. Process. Technol., vol. 213, no. 8, pp. 1337–1347, 2013. DOI: 10.1016/j.jmatprotec.2013.01.028.
  • H. Laurent, J. Coër, P. Y. Manach, M. C. Oliveira, and L. F. Menezes, Experimental and numerical studies on the warm deep drawing of an Al–Mg alloy, Int. J. Mech. Sci., vol. 93, pp. 59–72, 2015. DOI: 10.1016/j.ijmecsci.2015.01.009.
  • H. Wang, Y-b Luo, P. Friedman, M-h Chen, and L. Gao, Warm forming behavior of high strength aluminum alloy AA7075, Transact. N. Metals Soc. China, vol. 22, no. 1, pp. 1–7, 2012. DOI: 10.1016/S1003-6326(11)61131-X.
  • S. Kurukuri, A. H. van den Boogaard, A. Miroux, and B. Holmedal, Warm forming simulation of Al–Mg sheet, J. Mater. Process. Technol., vol. 209, no. 15–16, pp. 5636–5645, 2009. DOI: 10.1016/j.jmatprotec.2009.05.024.
  • D. Li, and A. K. Ghosh, Biaxial warm forming behavior of aluminum sheet alloys, J. Mater. Process. Technol., vol. 145, no. 3, pp. 281–293, 2004. DOI: 10.1016/j.jmatprotec.2003.07.003.
  • Z. Shao, et al., Experimental investigation of forming limit curves and deformation features in warm forming of an aluminium alloy, Proc. Inst. Mech. Eng., Part B: J. Eng. Manufact., vol. 232, no. 3, pp. 465–474, 2018. DOI: 10.1177/0954405416645776.
  • S. S. Panicker, K. S. Prasad, S. Basak, and S. K. Panda, Constitutive behavior and deep drawability of three aluminum alloys under different temperatures and deformation speeds, J. Mater. Eng. Perform., vol. 26, no. 8, pp. 3954–3969, 2017. DOI: 10.1007/s11665-017-2837-x.
  • N. Abedrabbo, F. Pourboghrat, and J. Carsley, Forming of AA5182-O and AA5754-O at elevated temperatures using coupled thermo-mechanical finite element models, Int. J. Plast., vol. 23, no. 5, pp. 841–875, 2007. DOI: 10.1016/j.ijplas.2006.10.005.
  • N. Abedrabbo, F. Pourboghrat, and J. Carsley, Forming of aluminum alloys at elevated temperatures – Part 2: Numerical modeling and experimental verification, Int. J. Plast., vol. 22, no. 2, pp. 342–373, 2006. DOI: 10.1016/j.ijplas.2005.03.006.
  • J. M. P. Martins, J. L. Alves, D. M. Neto, M. C. Oliveira, and L. F. Menezes, Numerical analysis of different heating systems for warm sheet metal forming, Int. J. Adv. Manuf. Technol., vol. 83, no. 5–8, pp. 897–909, 2016. DOI: 10.1007/s00170-015-7618-9.
  • H. S. Kim, M. Koç, and J. Ni, Development of an analytical model for warm deep drawing of aluminum alloys, J. Mater. Process. Technol., vol. 197, no. 1–3, pp. 393–407, 2008. DOI: 10.1016/j.jmatprotec.2007.06.046.
  • T. Mayavan, L. Karthikeyan, and V. S. Senthilkumar, Experimental and numerical studies on isothermal and non-isothermal deep drawing of IS 513 CR3 steel sheets, J. Mater. Eng. Perform., vol. 25, no. 11, pp. 4837–4847, 2016. DOI: 10.1007/s11665-016-2325-8.
  • H. Vafaeenezhad, S. H. Seyedein, M. R. Aboutalebi, and A. R. Eivani, Using high temperature tensile testing data to analyze hot formability of Sn-5Sb alloy: instability and critical damage criteria, J. Mater. Res. Technol., vol. 9, no. 3, pp. 4159–4172, 2020. DOI: 10.1016/j.jmrt.2020.02.043.
  • F. Abbassi, S. Mistou, and A. Zghal, Failure analysis based on microvoid growth for sheet metal during uniaxial and biaxial tensile tests, Mater. Design, vol. 49, pp. 638–646, 2013. DOI: 10.1016/j.matdes.2013.02.020.
  • L. Jebri, F. Abbassi, M. Demiral, M. Soula, and F. Ahmad, Experimental and numerical analysis of progressive damage and failure behavior of carbon Woven-PPS, Compos. Struct., vol. 243, pp. 112234, 2020. DOI: 10.1016/j.compstruct.2020.112234.
  • MAli Kouka, F. Abbassi, M. Demiral, F. Ahmad, M. Soula, and F. Al Housni, Behaviour of woven-ply PPS thermoplastic laminates with interacting circular holes under tensile loading: An experimental and numerical study, Eng. Fract. Mech., vol. 251, pp. 107802, 2021. DOI: 10.1016/j.engfracmech.2021.107802.
  • ISO 20482: Metallic Materials – Sheet and Strip – Erichsen Cupping Test. International Organization for Standardization (ISO), Geneva, 2003.
  • R. Hill, The Mathematical Theory of Plasticity, Oxford University Press: Oxford, UK, 1950. pp. 317–340.
  • M. A. Iqbal, A. Chakrabarti, S. Beniwal, and N. K. Gupta, 3D numerical simulations of sharp nosed projectile impact on ductile targets, Int. J. Impact Eng., vol. 37, no. 2, pp. 185–195, 2010. DOI: 10.1016/j.ijimpeng.2009.09.008.
  • G. Johnson, and W. Cook, A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, in Proceedings of the 7th International Symposium on Ballistics, pp. 541–547, 1983.
  • A. M. Vemula, G. Chandra Mohan Reddy, and M. Manzoor Hussain, Comparison of experimental and simulation results using erichsen cupping test of titanium alloy OT 4–1, Mater. Today: Proc., vol. 45, pp. 2096–2104, 2021. DOI: 10.1016/j.matpr.2020.09.632.
  • Z. Cheong, F. S. Sorce, S. Ngo, C. Lowe, and A. C. Taylor, The effect of substrate material properties on the failure behaviour of coatings in the Erichsen cupping test, Prog. Org. Coat., vol. 151, pp. 106087, 2021. DOI: 10.1016/j.porgcoat.2020.106087.
  • T. Gao, et al., Investigation on mechanical behavior and plastic damage of AA7075 aluminum alloy by thermal small punch test: Experimental trials, numerical analysis, J. Manuf. Processes, vol. 50, pp. 1–16, 2020. DOI: 10.1016/j.jmapro.2019.12.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.