339
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Dynamic response of fluid-conveying hybrid smart carbon nanotubes considering slip boundary conditions under a moving nanoparticle

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 2135-2148 | Received 05 Jan 2022, Accepted 05 Mar 2022, Published online: 17 Mar 2022

References

  • M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, et al., Carbon nanotubes. In: The physics of fullerene-based and fullerene-related materials, Springer, 2000. vol. 31, pp. 331–379. DOI:10.1007/978-94-011-4038-6
  • W. Lai, E. Huang, and K. Lui , Alginate-based complex fibers with the Janus morphology for controlled release of co-delivered drugs , Asian J Pharm Sci., vol. 16, no. 1, pp. 77–85, 2021. DOI: 10.1016/j.ajps.2020.05.003.
  • O. A. M. Reales, and R. D. Toledo Filho, A review on the chemical, mechanical and microstructural characterization of carbon nanotubes-cement based composites, Constr Build Mater., vol. 154, pp. 697–710, 2017.
  • S. I. Yengejeh, S. A. Kazemi, and A. Öchsner, Carbon nanotubes as reinforcement in composites: A review of the analytical, numerical and experimental approaches, Comput Mater Sci., vol. 136, pp. 85–101, 2017. DOI: 10.1016/j.commatsci.2017.04.023.
  • P. N. Singh, A. Saxena, and S. Gangwar, Tribological aspect of nano-lubricant based on carbon nanotubes (CNTs) and graphene—a review, Adv Eng Mater Sel Proc FLAME., vol. 257, 2020.
  • N. Hao, and Y. Jian, Instability analysis of carbon nanotubes conveying viscoelastic fluid, J. Phys. D: Appl. Phys., vol. 53, no. 11, pp. 11LT01, 2020. DOI: 10.1088/1361-6463/ab6024.
  • J. Yoon, C. Q. Ru, and A. Mioduchowski, Vibration and instability of carbon nanotubes conveying fluid, Compos Sci Technol., vol. 65, no. 9, pp. 1326–1336, 2005. DOI: 10.1016/j.compscitech.2004.12.002.
  • R. E. Tuzun, D. W. Noid, B. G. Sumpter, et al., Dynamics of fluid flow inside carbon nanotubes, Nanotechnology., vol. 7, no. 3, pp. 241–246, 1996. DOI: 10.1088/0957-4484/7/3/012.
  • R. Bahaadini, M. Hosseini, and A. Jamalpoor, Nonlocal and surface effects on the flutter instability of cantilevered nanotubes conveying fluid subjected to follower forces, Phys B Condens Matter., Epub ahead of print 2017. DOI: 10.1016/j.physb.2016.12.033.
  • C. Q. Chen, Y. Shi, Y. S. Zhang, et al., Size dependence of Young’s modulus in ZnO nanowires, Phys Rev Lett., vol. 96, no. 7, pp. 075505, 2006.
  • G. Stan, C. V. Ciobanu, P. M. Parthangal, et al., Diameter-dependent radial and tangential elastic moduli of ZnO nanowires, vol. 7 no. 12, pp. 3691–3697. 2007. DOI: 10.1021/NL071986E.
  • F. Yang, A. C. M. Chong, D. C. C. Lam, et al., Couple stress based strain gradient theory for elasticity, Int J Solids Struct., vol. 39, no. 10, pp. 2731–2743, 2002. DOI: 10.1016/S0020-7683(02)00152-X.
  • S. K. Park, and X.-L. Gao, Bernoulli–Euler beam model based on a modified couple stress theory, J. Micromech. Microeng., vol. 16, no. 11, pp. 2355–2359, 2006. DOI: 10.1088/0960-1317/16/11/015.
  • A. C. Eringen, Linear theory of nonlocal elasticity and dispersion of plane waves, Int J Eng Sci., vol. 10, no. 5, pp. 425–435, 1972. DOI: 10.1016/0020-7225(72)90050-X.
  • N. A. Fleck, and J. Hutchinson, A phenomenological theory for strain gradient effects in plasticity, J Mech Phys Solids., vol. 41, no. 12, pp. 1825–1857, 1993. DOI: 10.1016/0022-5096(93)90072-N.
  • D. C. C. Lam, F. Yang, A. C. M. Chong, et al., Experiments and theory in strain gradient elasticity, J Mech Phys Solids., vol. 51, no. 8, pp. 1477–1508, 2003. DOI: 10.1016/S0022-5096(03)00053-X.
  • A. F. Radwan, and M. Sobhy, A nonlocal strain gradient model for dynamic deformation of orthotropic viscoelastic graphene sheets under time harmonic thermal load, Phys B Condens Matter., vol. 538, pp. 74–84, 2018. DOI: 10.1016/j.physb.2018.03.008.
  • M. Sadeghi-Goughari, S. Jeon, and H.-J. Kwon, Fluid structure interaction of cantilever micro and nanotubes conveying magnetic fluid with small size effects under a transverse magnetic field, J Fluids Struct., vol. 94, pp. 102951, 2020. DOI: 10.1016/j.jfluidstructs.2020.102951.
  • M. Hosseini, M. R. Mofidi, A. Jamalpoor, et al., Nanoscale mass nanosensor based on the vibration analysis of embedded magneto-electro-elastic nanoplate made of FGMs via nonlocal Mindlin plate theory, Microsyst. Technol., vol. 24, no. 5, pp. 2295–2316, 2018. DOI: 10.1007/s00542-017-3654-8.
  • X. Zhu, and L. Li, On longitudinal dynamics of nanorods, Int J Eng Sci., vol. 120, pp. 129–145, 2017. DOI: 10.1016/j.ijengsci.2017.08.003.
  • X. Zhu, and L. Li, Closed form solution for a nonlocal strain gradient rod in tension, Int J Eng Sci., vol. 119, pp. 16–28, 2017. DOI: 10.1016/j.ijengsci.2017.06.019.
  • A. Jamalpoor, and M. Hosseini, Biaxial buckling analysis of double-orthotropic microplate-systems including in-plane magnetic field based on strain gradient theory, Compos Part B., vol. 75, pp. 53–64, 2015. DOI: 10.1016/j.compositesb.2015.01.026.
  • M. Hosseini, M. Bahreman, and A. Jamalpoor, Using the modified strain gradient theory to investigate the size-dependent biaxial buckling analysis of an orthotropic multi-microplate system, Acta Mech., vol. 227, no. 6, pp. 1621–1643, 2016. DOI: 10.1007/s00707-016-1570-0.
  • A. Jamalpoor, A. Ahmadi-Savadkoohi, and S. Hosseini-Hashemi, Free vibration and biaxial buckling analysis of magneto-electro-elastic microplate resting on visco-Pasternak substrate via modified strain gradient theory, Smart Mater. Struct., vol. 25, no. 10, pp. 105035, 2016. DOI: 10.1088/0964-1726/25/10/105035.
  • A. Jamalpoor, M. Bahreman, and M. Hosseini, Free transverse vibration analysis of orthotropic multi-viscoelastic microplate system embedded in visco-Pasternak medium via modified strain gradient theory, Jnl. Of Sandwich Structures & Materials., vol. 21, no. 1, pp. 175–210, 2019. DOI: 10.1177/1099636216689384.
  • A. Jamalpoor, and A. Kiani, Vibration analysis of bonded double-FGM viscoelastic nanoplate systems based on a modified strain gradient theory incorporating surface effects, Appl Phys A., vol. 123, pp. 201, 2017.
  • C. W. Lim, G. Zhang, and J. N. Reddy, A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation, J Mech Phys Solids., vol. 78, pp. 298–313, 2015. DOI: 10.1016/j.jmps.2015.02.001.
  • L. Li, and Y. Hu, Wave propagation in fluid-conveying viscoelastic carbon nanotubes based on nonlocal strain gradient theory, Comput Mater Sci., vol. 112, pp. 282–288, 2016. DOI: 10.1016/j.commatsci.2015.10.044.
  • M. Malikan, V. B. Nguyen, and F. Tornabene, Damped forced vibration analysis of single-walled carbon nanotubes resting on viscoelastic foundation in thermal environment using nonlocal strain gradient theory, Eng Sci Technol an Int J., vol. 21, no. 4, pp. 778–786, 2018. DOI: 10.1016/j.jestch.2018.06.001.
  • R. Bahaadini, A. R. Saidi, and M. Hosseini, Flow-induced vibration and stability analysis of carbon nanotubes based on the nonlocal strain gradient Timoshenko beam theory, J Vib Control., vol. 25, no. 1, pp. 203–218, 2019. DOI: 10.1177/1077546318774242.
  • L. Li, Y. Hu, X. Li, et al., Size-dependent effects on critical flow velocity of fluid-conveying microtubes via nonlocal strain gradient theory, Microfluid. Nanofluid., vol. 20, no. 5, pp. 1–12, 2016. DOI: 10.1007/s10404-016-1739-9.
  • A. Amiri, R. Talebitooti, and L. Li, Wave propagation in viscous-fluid-conveying piezoelectric nanotubes considering surface stress effects and Knudsen number based on nonlocal strain gradient theory, Eur Phys J Plus., vol. 133, pp. 1–17, 2018.
  • Q. Jin, and Y. Ren, Nonlinear size-dependent bending and forced vibration of internal flow-inducing pre-and post-buckled FG nanotubes, Commun Nonlinear Sci Numer Simul., vol. 104, pp. 106044, 2022. DOI: 10.1016/j.cnsns.2021.106044.
  • Q. Jin, Y. Ren, H. Jiang, et al., A higher-order size-dependent beam model for nonlinear mechanics of fluid-conveying FG nanotubes incorporating surface energy, Compos Struct., vol. 269, pp. 114022, 2021. DOI: 10.1016/j.compstruct.2021.114022.
  • M. Arda, Evaluation of optimum length scale parameters in longitudinal wave propagation on nonlocal strain gradient carbon nanotubes by lattice dynamics, Mech Based Des Struct Mach., pp. 1–24, 2020. DOI: 10.1080/15397734.2020.1835488.
  • K. Ghorbani, A. Rajabpour, and M. Ghadiri, Determination of carbon nanotubes size-dependent parameters: Molecular dynamics simulation and nonlocal strain gradient continuum shell model, Mech Based Des Struct Mach., vol. 49, no. 1, pp. 103–120, 2021. DOI: 10.1080/15397734.2019.1671863.
  • I. Esen, A. A. Daikh, and M. A. Eltaher, Dynamic response of nonlocal strain gradient FG nanobeam reinforced by carbon nanotubes under moving point load, Eur Phys J Plus., vol. 136, pp. 1–22, 2021.
  • M. D. Maeder, D. Damjanovic, and Njj Setter, Lead free piezoelectric materials, Electroceram. J., vol. 13, no. 1-3, pp. 385–392, 2004. DOI: 10.1007/s10832-004-5130-y.
  • S. R. Anton, and H. A. Sodano, A review of power harvesting using piezoelectric materials (2003–2006), Smart Mater. Struct., vol. 16, no. 3, pp. R1–R21, 2007. DOI: 10.1088/0964-1726/16/3/R01.
  • F. P. Bundy, and R. H. Wentorf, Jr Direct transformation of hexagonal boron nitride to denser forms, J Chem Phys., vol. 38, no. 5, pp. 1144–1149, 1963. DOI: 10.1063/1.1733815.
  • P. Roodgar Saffari, M. Fakhraie, and M. A. Roudbari, Free vibration and transient response of heterogeneous piezoelectric sandwich annular plate using third-order shear deformation assumption, J Solid Mech., vol. 12, no. 2, pp. 315–333, 2021. DOI: 10.22034/jsm.2019.1865985.1420.
  • F. Ebrahimi, and A. Rastgo, An analytical study on the free vibration of smart circular thin FGM plate based on classical plate theory, Thin-Walled Struct., vol. 46, no. 12, pp. 1402–1408, 2008. DOI: 10.1016/j.tws.2008.03.008.
  • Z. L. Wang, and J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays, Science, vol. 312, no. 5771, pp. 242–246, 2006. DOI: 10.1126/science.1124005.
  • S. M. Tanner, J. M. Gray, C. T. Rogers, et al., High-Q GaN nanowire resonators and oscillators, Appl. Phys. Lett., vol. 91, no. 20, pp. 203117, 2007. DOI: 10.1063/1.2815747.
  • L. Sun, G. Wang, C. Zhang, Q. Jin, and Y. Song, On the rheological properties of multi-walled carbon nano-polyvinylpyrrolidone/silicon-based shear thickening fluid, Nanotechnol Rev (Berlin)., vol. 10, no. 1, pp. 1339–1348, 2021. DOI: 10.1515/ntrev-2021-0087.
  • R. Bahaadini, M. Hosseini, and B. Jamali, Flutter and divergence instability of supported piezoelectric nanotubes conveying fluid, Phys B Condens Matter., vol. 529, pp. 57–65, 2018. DOI: 10.1016/j.physb.2017.09.130.
  • S. H. Hashemi Kachapi, Surface/interface approach in pull-in instability and nonlinear vibration analysis of fluid-conveying piezoelectric nanosensor, Mech Based Des Struct Mach., pp. 1–26, 2020.
  • D. G. Ninh, H. Eslami, and V. N. V. Hoang, Dynamical behaviors of conveying-fluid nanocomposite toroidal shell segments with piezoelectric layer in thermal environment using the Reddy’s third-order shear deformation shell theory, Thin-Walled Struct., vol. 159, pp. 107204, 2021. DOI: 10.1016/j.tws.2020.107204.
  • P. Roodgar Saffari, M. Fakhraie, and M. A. Roudbari, Size-dependent vibration problem of two vertically-aligned single-walled boron nitride nanotubes conveying fluid in thermal environment via nonlocal strain gradient shell model, J Solid Mech., vol. 13, no. 2, pp. 164–185, 2021
  • Y. Zarabimanesh, P. Roodgar Saffari, P. Roudgar Saffari, et al., Hygro-thermo-mechanical vibration of two vertically aligned single-walled boron nitride nanotubes conveying fluid, J Vib Control., pp. 107754632110065, 2021. DOI: 10.1177/10775463211006512.
  • P. Roodgar Saffari, M. Fakhraie, and M. A. Roudbari, Free vibration problem of fluid-conveying double-walled boron nitride nanotubes via nonlocal strain gradient theory in thermal environment, Mech Based Des Struct Mach., pp. 1–18, 2020. DOI: 10.1080/15397734.2020.1819310.
  • J. P. Coulter, K. D. Weiss, and J. D. Carlson, Engineering applications of electrorheological materials, J Intell Mater Syst Struct., vol. 4, no. 2, pp. 248–259, 1993. DOI: 10.1177/1045389X9300400215.
  • S. M. Hasheminejad, M. Cheraghi, and A. Jamalpoor, Active damping of sound transmission through an electrorheological fluid-actuated sandwich cylindrical shell, Jnl. Of Sandwich Structures & Materials, vol. 22, no. 3, pp. 833–865, 2020. DOI: 10.1177/1099636218777966.
  • S. M. Hasheminejad, and A. Jamalpoor, Sound transmission control through a hybrid smart double sandwich plate structure, J Sandw Struct Mater., vol. 23, no. 6, pp. 2443–2483, 2021.
  • A. Allahverdizadeh, M. J. Mahjoob, M. Maleki, et al., Structural modeling, vibration analysis and optimal viscoelastic layer characterization of adaptive sandwich beams with electrorheological fluid core, Mech Res Commun., vol. 51, pp. 15–22, 2013. DOI: 10.1016/j.mechrescom.2013.04.009.
  • S. M. Hasheminejad, and A. Jamalpoor, Cancelation of acoustic scattering from a smart hybrid ERF/PZT-based double‐wall composite spherical shell structure, Mech Adv Mater Struct., pp. 1–22, 2021. DOI: 10.1080/15376494.2021.1995549.
  • K. D. Weiss, J. D. Carlson, and J. P. Coulter, Material aspects of electrorheological systems, J Intell Mater Syst Struct., vol. 4, no. 1, pp. 13–34, 1993. DOI: 10.1177/1045389X9300400103.
  • J.-Y. Yeh, L.-W. Chen, and C.-C. Wang, Dynamic stability of a sandwich beam with a constrained layer and electrorheological fluid core, Compos Struct., vol. 64, no. 1, pp. 47–54, 2004. DOI: 10.1016/S0263-8223(03)00212-5.
  • J.-Y. Yeh, Vibration and damping analysis of orthotropic cylindrical shells with electrorheological core layer, Aerosp Sci Technol., vol. 15, no. 4, pp. 293–303, 2011. DOI: 10.1016/j.ast.2010.08.002.
  • M. H. Gholamzadeh Babaki, and M. Shakouri, Free and forced vibration of sandwich plates with electrorheological core and functionally graded face layers, Mech Based Des Struct Mach., vol. 49, no. 5, pp. 689–706, 2021.
  • C. Thongchom, et al., An experimental study on the effect of nanomaterials and fibers on the mechanical properties of polymer composites, Buildings., vol. 12, no. 1, pp. 7, 2021. JanDOI: 10.3390/buildings12010007.
  • C. Thongchom, P. R. Saffari, N. Refahati, et al., An analytical study of sound transmission loss of functionally graded sandwich cylindrical nanoshell integrated with piezoelectric layers, Sci. Rep., vol. 12, no. 1, pp. 3048, 2022. DOI: 10.1038/s41598-022-06905-1.
  • R. Aboutalebi, M. Eshaghi, A. Taghvaeipour, et al., Post-Yield characteristics of electrorheological fluids in nonlinear vibration analysis of smart sandwich panels, Mech Based Des Struct Mach., pp. 1–20, 2021. DOI: 10.1080/15397734.2021.1886946.
  • B. A. Hamidi, S. A. Hosseini, H. Hayati, et al., Forced axial vibration of micro and nanobeam under axial harmonic moving and constant distributed forces via nonlocal strain gradient theory, Mech Based Des Struct Mach., pp. 1–15, 2020. DOI: 10.1080/15397734.2020.1744003.
  • F. Ebrahimi, and E. Salari, Size-dependent thermo-electrical buckling analysis of functionally graded piezoelectric nanobeams, Smart Mater. Struct., vol. 24, no. 12, pp. 125007, 2015. DOI: 10.1088/0964-1726/24/12/125007.
  • A. Masoumi, A. Amiri, and R. Talebitooti, Flexoelectric effects on wave propagation responses of piezoelectric nanobeams via nonlocal strain gradient higher order beam model, Mater. Res. Express, vol. 6, no. 10, pp. 1050d5, 2019. DOI: 10.1088/2053-1591/ab421b.
  • P. R. Saffari, M. Fakhraie, and M. A. Roudbari, Nonlinear vibration of fluid conveying cantilever nanotube resting on visco-pasternak foundation using non-local strain gradient theory, Micro & Nano Letters, vol. 15, no. 3, pp. 181–186, 2020. DOI: 10.1049/mnl.2019.0420.
  • R. Bahaadini, and M. Hosseini, Effects of nonlocal elasticity and slip condition on vibration and stability analysis of viscoelastic cantilever carbon nanotubes conveying fluid, Comput Mater Sci., vol. 114, pp. 151–159, 2016. DOI: 10.1016/j.commatsci.2015.12.027.
  • M. Sadeghi-Goughari, S. Jeon, and H.-J. Kwon, Effects of magnetic-fluid flow on structural instability of a carbon nanotube conveying nanoflow under a longitudinal magnetic field, Phys Lett A., vol. 381, no. 35, pp. 2898–2905, 2017. DOI: 10.1016/j.physleta.2017.06.054.
  • M. R. Permoon, M. Shakouri, and H. Haddadpour, Free vibration analysis of sandwich conical shells with fractional viscoelastic core, Compos Struct., vol. 214, pp. 62–72, 2019. DOI: 10.1016/j.compstruct.2019.01.082.
  • M. Yalcintas, and J. P. Coulter, Electrorheological material based adaptive beams subjected to various boundary conditions, J Intell Mater Syst Struct., vol. 6, no. 5, pp. 700–717, 1995. DOI: 10.1177/1045389X9500600511.
  • M. Dehestani, M. Mofid, and A. Vafai, Investigation of critical influential speed for moving mass problems on beams, Appl Math Model., vol. 33, no. 10, pp. 3885–3895, 2009. DOI: 10.1016/j.apm.2009.01.003.
  • W. Thomson, Theory of vibration with applications, CRC Press, 2018.
  • F. Mehralian, and Y. T. Beni, Vibration analysis of size-dependent bimorph functionally graded piezoelectric cylindrical shell based on nonlocal strain gradient theory, J Brazilian Soc Mech Sci Eng., vol. 40, pp. 27, 2018.
  • L. Wang, Q. Ni, M. Li, et al., The thermal effect on vibration and instability of carbon nanotubes conveying fluid, Phys E Low-Dimen Syst Nanostruct., vol. 40, no. 10, pp. 3179–3182, 2008. DOI: 10.1016/j.physe.2008.05.009.
  • A. Arikoglu, and I. Ozkol, Vibration analysis of composite sandwich beams with viscoelastic core by using differential transform method, Compos Struct., vol. 92, no. 12, pp. 3031–3039, 2010. DOI: 10.1016/j.compstruct.2010.05.022.
  • S.-W. Kung, and R. Singh, Vibration analysis of beams with multiple constrained layer damping patches, J Sound Vib., vol. 212, no. 5, pp. 781–805, 1998. DOI: 10.1006/jsvi.1997.1409.
  • D. J. Mead, and S. Markus, Loss factors and resonant frequencies of encastre damped sandwich beams, J Sound Vib., vol. 12, no. 1, pp. 99–112, 1970. DOI: 10.1016/0022-460X(70)90050-7.
  • J. X. Gao, and W. H. Liao, Vibration analysis of simply supported beams with enhanced self-sensing active constrained layer damping treatments, J Sound Vib., vol. 280, no. 1-2, pp. 329–357, 2005. DOI: 10.1016/j.jsv.2003.12.019.
  • C. Thongchom, et al., Sound transmission loss of a honeycomb sandwich cylindrical shell with functionally graded porous layers, Buildings., vol. 12, no. 2, pp. 151, 2022. FebDOI: 10.3390/buildings12020151.
  • M. Şimşek, Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory, Phys E Low-Dimension Syst Nanostruct., vol. 43, no. 1, pp. 182–191, 2010. DOI: 10.1016/j.physe.2010.07.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.