481
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Finite element method based damage model to characterize effect of geometric configuration on fracture properties of elastomeric composites

ORCID Icon, , , , ORCID Icon, & show all
Pages 2149-2163 | Received 05 Jan 2022, Accepted 05 Mar 2022, Published online: 22 Mar 2022

References

  • J. Herzberger, J. M. Sirrine, C. B. Williams, and T. E. Long, Polymer design for 3D printing elastomers: recent advances in structure, properties, and printing, Prog. Polym. Sci., vol. 97, pp. 101144, 2019. DOI: 10.1016/j.progpolymsci.2019.101144.
  • W. Kempton, and S. E. Letendre, Electric vehicles as a new power source for electric utilities, Trans. Res. Part D Trans. Environ., vol. 2, no. 3, pp. 157–175, 1997. DOI: 10.1016/S1361-9209(97)00001-1.
  • B. Zhao, N. Xu, H. Chen, K. Guo, and Y. Huang, Stability control of electric vehicles with in-wheel motors by considering tire slip energy, Mech. Syst. Signal Proc., vol. 118, pp. 340–359, 2019. DOI: 10.1016/j.ymssp.2018.08.037.
  • Z. Li, A. Khajepour, and J. Song, A comprehensive review of the key technologies for pure electric vehicles, Energy, vol. 182, pp. 824–839, 2019. DOI: 10.1016/j.energy.2019.06.077.
  • X. Jin, and G. Yin, Estimation of lateral tire-road forces and sideslip angle for electric vehicles using interacting multiple model filter approach, J. Franklin Ins., vol. 352, no. 2, pp. 686–707, 2015. DOI: 10.1016/j.jfranklin.2014.05.008.
  • R. M. Harrison, A. M. Jones, J. Gietl, J. Yin, and D. C. Green, Estimation of the contributions of brake dust, tire wear, and resuspension to nonexhaust traffic particles derived from atmospheric measurements, Environ. Sci. Technol., vol. 46, no. 12, pp. 6523–6529, 2012. DOI: 10.1021/es300894r.
  • N. A. Hocine, M. N. Abdelaziz, and A. Imad, Fracture problems of rubbers: J-integral estimation based upon η factors and an investigation on the strain energy density distribution as a local criterion, Int. J. Fract., vol. 117, no. 1, pp. 1–23, 2002. https://doi.org/10.1023/A:1020967429222. DOI: 10.1023/A:1020967429222.
  • M. R. Ayatollahi, M. Heydari-Meybodi, F. Berto, and M. Y. Yahya, Mixed-mode fracture in EPDM/SBR/nanoclay rubber composites: an experimental and theoretical investigation, Compos. Part B Eng., vol. 176, pp. 107312, 2019. DOI: 10.1016/j.compositesb.2019.107312.
  • J. Xu, Z. L. Zhang, E. Østby, B. Nyhus, and D. B. Sun, Effects of crack depth and specimen size on ductile crack growth of SENT and SENB specimens for fracture mechanics evaluation of pipeline steels, Int. J. Press Vessel. Pip., vol. 86, no. 12, pp. 787–797, 2009. DOI: 10.1016/j.ijpvp.2009.12.004.
  • Z. Zhou, Z. Tong, G. Qian, and F. Berto, Specimen size effect on the ductile-brittle transition reference temperature of A508-3 steel, Theor. Appl. Fract. Mech., vol. 104, pp. 102370, 2019. DOI: 10.1016/j.tafmec.2019.102370.
  • Z. P. Bažant, and B. H. Oh, Crack band theory for fracture of concrete, Mat. Constr., vol. 16, no. 3, pp. 155–177, 1983. DOI: 10.1007/BF02486267.
  • Z. P. Bažant, and J. Planas, Fracture and Size Effect in Concrete and Other Quasibrittle Materials, Routledge, Abingdon, 2019.
  • Z. P. Bazant, Instability, ductility, and size effect in strain-softening concrete, ASCE J. Eng. Mech. Div., vol. 102, pp. 331–344, 1976.
  • M. Liu, J. Guo, C. Y. Hui, and A. Zehnder, Crack tip stress based kinetic fracture model of a PVA dual-crosslink hydrogel, Extrem. Mech. Lett., vol. 29, pp. 100457, 2019. DOI: 10.1016/j.eml.2019.100457.
  • D. Roucou, J. Diani, M. Brieu, and A. Mbiakop-Ngassa, Critical strain energy release rate for rubbers: single edge notch tension versus pure shear tests, Int. J. Fract., vol. 216, no. 1, pp. 31–39, 2019. DOI: 10.1007/s10704-018-00336-8.
  • J. R. Rice, A path independent integral and the approximate analysis of strain concentration by notches and cracks, J. Appl. Mech., vol. 35, no. 2, pp. 379–386, 1968. DOI: 10.1115/1.3601206.
  • R. S. Rivlin, and A. G. Thomas, Rupture of rubber. I. Characteristic energy for tearing, J. Polym. Sci., vol. 10, no. 3, pp. 291–318, 1953. DOI: 10.1002/pol.1953.120100303.
  • L. Marsavina, F. Berto, R. Negru, D. A. Serban, and E. Linul, An engineering approach to predict mixed mode fracture of PUR foams based on ASED and micromechanical modelling, Theor. Appl. Fract. Mech., vol. 91, pp. 148–154, 2017. DOI: 10.1016/j.tafmec.2017.06.008.
  • P. J. Withers, Fracture mechanics by three-dimensional crack-tip synchrotron X-ray microscopy, Phila. Trans. R Soc. A., vol. 373, no. 2036, pp. 20130157, 2015. DOI: 10.1098/rsta.2013.0157.
  • M. Ludwig, T. Alshuth, M. El Yaagoubi and D. Juhre, Lifetime prediction of elastomers based on statistical occurrence of material defects. Constitutive Models for Rubbers IX, CRC Press, Headquarters, FL, pp. 445–448, 2015. DOI: 10.1201/b18701-77.
  • M. Heydari-Meybodi, M. R. Ayatollahi, M. Dehghany, and F. Berto, Mixed-mode (I/II) failure assessment of rubber materials using the effective stretch criterion, Theor. Appl. Fract. Mech., vol. 91, pp. 126–133, 2017. DOI: 10.1016/j.tafmec.2017.05.001.
  • M. Goswami, S. Goyal, A. Kumar, G. A. Harmain, and S. K. Albert, Effect of triaxial state of stress on tensile behavior of modified 9Cr-1Mo steel, J. Mater. Eng. Perform., vol. 29, pp. 1579–1588, 2019. DOI: 10.1007/s11665-020-04670-8.
  • S. Sharma, K. Sarkar, M. Goswami, A. Deb, S. Dcunha, and S. Chattopadhyay, An approach to design extrusion dies for complex shaped rubber profiles using finite element analysis, J. Manuf. Proc., vol. 57, pp. 700–711, 2020. DOI: 10.1016/j.jmapro.2020.07.033.
  • S. Sharma, M. Goswami, A. Deb, B. Padhan, and S. Chattopadhyay, Structural deformation/instability of the co-extrudate rubber profiles due to die swell: experimental and CFD studies with 3D models, Chem. Eng. J., vol. 424, pp. 130504, 2021. DOI: 10.1016/j.cej.2021.130504.
  • S. Das, S. Sharma, A. Ramaswamy, D. Roy, and J. N. Reddy, A geometrically inspired model for brittle damage in compressible elastomers, J. Appl. Mech. Trans. ASME, vol. 88, pp. 081002, 2021. DOI: 10.1115/1.4050620.
  • Y. Wu, Y. Xing, and B. Liu, Analysis of isotropic and composite laminated plates and shells using a differential quadrature hierarchical finite element method, Compos. Struct., vol. 205, pp. 11–25, 2018. DOI: 10.1016/j.compstruct.2018.08.095.
  • Y. Yan, B. Liu, Y. Xing, E. Carrera, and A. Pagani, Free vibration analysis of variable stiffness composite laminated beams and plates by novel hierarchical differential quadrature finite elements, Compos. Struct., vol. 274, pp. 114364, 2021. DOI: 10.1016/j.compstruct.2021.114364.
  • H. Kabir, and M. M. Aghdam, A robust Bézier based solution for nonlinear vibration and post-buckling of random checkerboard graphene nano-platelets reinforced composite beams, Compos. Struct., vol. 212, pp. 184–198, 2019. DOI: 10.1016/j.compstruct.2019.01.041.
  • H. Kabir, and M. M. Aghdam, A generalized 2D Bézier-based solution for stress analysis of notched epoxy resin plates reinforced with graphene nanoplatelets, Thin-Walled Struct., vol. 169, pp. 108484, 2021. DOI: 10.1016/j.tws.2021.108484.
  • J. Plagge, A. Ricker, N. H. Kröger, P. Wriggers, and M. Klüppel, Efficient modeling of filled rubber assuming stress-induced microscopic restructurization, Int. J. Eng. Sci., vol. 151, pp. 103291, 2020. DOI: 10.1016/j.ijengsci.2020.103291.
  • A. Fehse, N. H. Kröger, K. Mang, and T. Wick, Crack path comparisons of a mixed phase-field fracture model and experiments in punctured EPDM strips, Proc. Appl. Math. Mech., vol. 20, no. 1, pp. e202000335, 2021. DOI: 10.1002/pamm.202000335.
  • G. Abaqus, Abaqus 6.11. Dassault Syst Simulia Corp Provid RI, USA, 2011.
  • J. Guo, C. Y. Hui, M. Liu, and A. T. Zehnder, The stress field near the tip of a plane stress crack in a gel consisting of chemical and physical cross-links, Proc. Math. Phys. Eng. Sci., vol. 475, no. 2227, pp. 20180863, 2019. DOI: 10.1098/rspa.2018.0863.
  • M. El Yaagoubi, D. Juhre, J. Meier, T. Alshuth, and U. Giese, Tearing energy and path-dependent J-integral evaluation considering stress softening for carbon black reinforced elastomers, Eng. Fract. Mech., vol. 190, pp. 259–272, 2018. DOI: 10.1016/j.engfracmech.2017.12.029.
  • M. El Yaagoubi, D. Juhre, J. Meier, N. Kröger, T. Alshuth, and U. Giese, Lifetime prediction of filled elastomers based on particle distribution and the J-integral evaluation, Int. J. Fatigue, vol. 112, pp. 341–354, 2018. DOI: 10.1016/j.ijfatigue.2018.03.024.
  • Y. Nakajima, Advanced Tire Mechanics, Springer, Berlin, Germany, pp. 1019–1127, 2019.
  • M. Mooney, A theory of large elastic deformation, J. Appl. Phys., vol. 11, no. 9, pp. 582–592, 1940. DOI: 10.1063/1.1712836.
  • O. H. Yeoh, Some forms of the strain energy function for rubber, Rubber Chem. Technol., vol. 66, no. 5, pp. 754–771, 1993. DOI: 10.5254/1.3538343.
  • R. W. Ogden, Large deformation isotropic elasticity–on the correlation of theory and experiment for incompressible rubberlike solids, Proc. R Soc. Lond. A Math. Phys. Sci., vol. 326, pp. 565–584, 1972.
  • B. Kim, S. B. Lee, J. Lee, S. Cho, H. Park, S. Yeom, and S. H. Park, A comparison among neo-hookean model, mooney-rivlin model, and ogden model for chloroprene rubber, Int. J. Precis. Eng. Manuf., vol. 13, no. 5, pp. 759–764, 2012. DOI: 10.1007/s12541-012-0099-y.
  • M. Goswami, M. Schiewek, J. L. Valentín, H. Schneider, D. R. Long, M. Saphiannikova, P. Sotta, K. Saalwächter, and M. Ott, Optimization of graphene in carbon black‐filled nitrile butadiene rubber: Constitutive modeling and verification using finite element analysis, Polym. Compos. vol. 41, pp. 1853–1866, 2020. DOI: 10.1002/pc.25503
  • G. Marckmann, and E. Verron, Comparison of hyperelastic models for rubber-like materials, Rubber Chem. Technol., vol. 79, no. 5, pp. 835–858, 2006. DOI: 10.5254/1.3547969.
  • R. Pérez-Aparicio, et al., Local chain deformation and overstrain in reinforced elastomers: an NMR study, Macromolecules., vol. 46, no. 14, pp. 5549–5560, 2013. DOI: 10.1021/ma400921k.
  • O. C. Garishin, and V. V. Moshev, Damage model of elastic rubber particulate composites, Theor. Appl. Fract. Mech., vol. 38, no. 1, pp. 63–69, 2002. DOI: 10.1016/S0167-8442(02)00081-2.
  • M. H. Nagaraj, I. Kaleel, E. Carrera, and M. Petrolo, Elastoplastic micromechanical analysis of fiber-reinforced composites with defects, DOI: Aerotec Missili Spaz,.2021. 10.1007/s42496-021-00103-4.
  • M. Galouei, and A. Fakhimi, Size effect, material ductility and shape of fracture process zone in quasi-brittle materials, Comput. Geotech., vol. 65, pp. 126–135, 2015. DOI: 10.1016/j.compgeo.2014.12.010.
  • J. R. A. Rice, Path independent integral and the approximate analysis of strain concentration by notches and cracks, J. Appl. Mech., vol. 35, pp. 379–386,  1968.
  • A. R. Shahani, H. Shooshtar, and M. Baghaee, On the determination of the critical J-integral in rubber-like materials by the single specimen test method, Eng. Fract. Mech., vol. 184, pp. 101–120, 2017. DOI: 10.1016/j.engfracmech.2017.08.031.
  • J. A. Begley, and J. D. Landes, The J-Integral as a Fracture Criterion. Fract Toughness Part II, ASTM International, West Conshohocken, PA, 1972.
  • D. J. Lee, and J. A. Donovan, Critical J-integral and tearing energies for fracture of reinforced natural rubber, Theor. Appl. Fract. Mech., vol. 4, no. 2, pp. 137–147, 1985. DOI: 10.1016/0167-8442(85)90018-7.
  • M. Torabizadeh, Z. A. Putnam, M. Sankarasubramanian, J. C. Moosbrugger, and S. Krishnan, The effects of initial crack length on fracture characterization of rubbers using the J-Integral approach, Polym. Test., vol. 73, pp. 327–337, 2019. DOI: 10.1016/j.polymertesting.2018.11.026.
  • B. Dong, C. Liu, and Y. P. Wu, Fracture and fatigue of silica/carbon black/natural rubber composites, Polym. Test., vol. 38, pp. 40–45, 2014. DOI: 10.1016/j.polymertesting.2014.06.004.
  • S. Agnelli, W. Balasooriya, F. Bignotti, and B. Schrittesser, On the experimental measurement of fracture toughness in SENT rubber specimens, Polym. Test., vol. 87, pp. 106508, 2020. DOI: 10.1016/j.polymertesting.2020.106508.
  • M. Goswami, S. K. Ghorai, S. Sharma, G. Chakraborty, and S. Chattopadhyay, Nonlinear fracture assessment and nanomechanical deformation of elastomeric composites: Development of finite element model and experimental validation, Polym. Compos., vol. 42, pp. 3572–3592. DOI: 10.1002/pc.26080.
  • M. Imanaka, Y. Nakamura, A. Nishimura, and T. Iida, Fracture toughness of rubber-modified epoxy adhesives: effect of plastic deformability of the matrix phase, Compos. Sci. Technol., vol. 63, no. 1, pp. 41–51, 2003. DOI: 10.1016/S0266-3538(02)00175-6.
  • G. E. Hale, and F. Ramsteiner, J-fracture toughness of polymers at low speed. Eur. Struct. Integr. Soc, vol. 28, pp. 123–157 2001.
  • A. Gosch, F. J. Arbeiter, S. Agnelli, M. Berer, and F. Baldi, Size‐induced constraint effects on crack initiation and propagation parameters in ductile polymers, Materials (Basel), vol. 14, no. 8, pp. 1945, 2021. DOI: 10.3390/ma14081945.
  • O. Kolednik, A simple model to explain the geometry dependence of J− Δa-curves, Int. J. Fract., vol. 63, no. 3, pp. 263–274, 1993. DOI: 10.1007/BF00012472.
  • M. Goswami, M. M. Ghosh, M. S. Dalmiya, S. Sharma, S. K. Ghorai, and S. Chattopadhyay, A finite element method based comparative fracture assessment of carbon black and silica filled elastomers: reinforcing efficacy of carbonaceous fillers in flexible composites, Polym. Test., vol. 91, pp. 106856, 2020. DOI: 10.1016/j.polymertesting.2020.106856.
  • C. E. Inglis, Stresses in a plate due to the presence of cracks and sharp corners, Trans. Inst. Nav. Arch., vol. 55, pp. 219–241, 1913.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.