516
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Crashing performance and multi-objective optimization of honeycomb-filled thin-walled energy absorber with axisymmetric thickness

, ORCID Icon, , &
Pages 2203-2220 | Received 19 Nov 2021, Accepted 11 Mar 2022, Published online: 28 Mar 2022

References

  • W. Ma, S. Xie, and Z. Li, Mechanical performance of bio-inspired corrugated tubes with varying vertex configurations, Int. J. Mech. Sci., vol. 172, p. 105399, 2020. DOI: 10.1016/j.ijmecsci.2019.105399.
  • W. Guan, G. Gao, Y. Yu, and T. Zhuo, Crashworthiness analysis and multi-objective optimization of expanding circular tube energy absorbers with cylindrical anti-clamber under eccentric loading for subway vehicles, Struct. Multidisc. Optim., vol. 61, no. 4, pp. 1711–1729, 2020. DOI: 10.1007/s00158-019-02427-z.
  • S. Ebrahimi and N. Vahdatazad, Multiobjective optimization and sensitivity analysis of honeycomb sandwich cylindrical columns under axial crushing loads, Thin-Walled Struct., vol. 88, pp. 90–104, 2015. DOI: 10.1016/j.tws.2014.12.004.
  • Z. Zhang, S. Liu, and Z. Tang, Comparisons of honeycomb sandwich and foam-filled cylindrical columns under axial crushing loads, Thin-Walled Struct., vol. 49, no. 9, pp. 1071–1079, 2011. DOI: 10.1016/j.tws.2011.03.017.
  • S. Santosa and T. Wierzbicki, Crash behavior of box columns filled with aluminum honeycomb or foam, Comput. Struct., vol. 68, no. 4, pp. 343–367, 1998. DOI: 10.1016/S0045-7949(98)00067-4.
  • H. Zhou, P. Xu, and S. Xie, Composite energy-absorbing structures combining thin-walled metal and honeycomb structures, Proc. Inst. Mech. Eng. F: J. Rail Rapid Transit., vol. 231, no. 4, pp. 394–405, 2017. DOI: 10.1177/0954409716631579.
  • J. Paz, J. Díaz, L. Romera, and M. Costas, Crushing analysis and multi-objective crashworthiness optimization of GFRP honeycomb-filled energy absorption devices, Finite Elem. Anal. Des., vol. 91, pp. 30–39, 2014. DOI: 10.1016/j.finel.2014.07.006.
  • Z. Wang, S. Yao, Z. Lu, D. Hui, and L. Feo, Matching effect of honeycomb-filled thin-walled square tube—Experiment and simulation, Compos. Struct., vol. 157, pp. 494–505, 2016. DOI: 10.1016/j.compstruct.2016.03.045.
  • Y. Peng, X. Wang, X. Xiong, and P. Xu, Crashing analysis and multi-objective optimisation of duplex energy-absorbing structure for subway vehicle, Int. J. Crashworthiness, vol. 21, no. 4, pp. 338–352, 2016. DOI: 10.1080/13588265.2016.1188470.
  • S. Xie, X. Liang, and H. Zhou, Design and analysis of a composite energy-absorbing structure for use on railway vehicles, Proc. Inst. Mech. Eng. F: J. Rail Rapid Transit., vol. 230, no. 3, pp. 825–839, 2016. DOI: 10.1177/0954409714566058.
  • Y. Peng, W. Deng, P. Xu, and S. Yao, Study on the collision performance of a composite energy-absorbing structure for subway vehicles, Thin-Walled Struct., vol. 94, pp. 663–672, 2015. DOI: 10.1016/j.tws.2015.05.016.
  • P. Xu, et al., Multi-objective optimisation of a honeycomb-filled composite energy absorber for subway vehicles, Int. J. Crashworthiness, vol. 25, no. 6, pp. 603–611, 2020. DOI: 10.1080/13588265.2019.1626537.
  • S. Yao, X. Xiao, P. Xu, Q. Qu, and Q. Che, The impact performance of honeycomb-filled structures under eccentric loading for subway vehicles, Thin-Walled Struct., vol. 123, pp. 360–370, 2018. DOI: 10.1016/j.tws.2017.10.031.
  • R.-J. Yang, Y. Fu, and G. Li, Application of tailor rolled blank in vehicle front end for frontal impact, SAE Technical Paper, 2007.
  • G. Li, F. Xu, G. Sun, and Q. Li, Crashworthiness study on functionally graded thin-walled structures, Int. J. Crashworthiness, vol. 20, no. 3, pp. 280–300, 2015. DOI: 10.1080/13588265.2015.1010396.
  • X. An, Y. Gao, J. Fang, G. Sun, and Q. Li, Crashworthiness design for foam-filled thin-walled structures with functionally lateral graded thickness sheets, Thin-Walled Struct., vol. 91, pp. 63–71, 2015. DOI: 10.1016/j.tws.2015.01.011.
  • X. Zhang and H. Zhang, Crush resistance of square tubes with various thickness configurations, Int. J. Mech. Sci., vol. 107, pp. 58–68, 2016. DOI: 10.1016/j.ijmecsci.2016.01.003.
  • H. Yin, X. Wang, G. Wen, C. Zhang, and W. Zhang, Crashworthiness optimization of bio-inspired hierarchical honeycomb under axial loading, Int. J. Crashworthiness, vol. 26, no. 1, pp. 26–37, 2021. DOI: 10.1080/13588265.2019.1650695.
  • J. Fazilati and M. Alisadeghi, Multiobjective crashworthiness optimization of multi-layer honeycomb energy absorber panels under axial impact, Thin-Walled Struct., vol. 107, pp. 197–206, 2016. DOI: 10.1016/j.tws.2016.06.008.
  • P. Xu, et al., Parameter study and multi-objective optimisation of an axisymmetric rectangular tube with diaphragms for subways, Thin-Walled Struct., vol. 136, pp. 186–199, 2019. DOI: 10.1016/j.tws.2018.12.025.
  • H. Yin, G. Wen, S. Hou, and Q. Qing, Multiobjective crashworthiness optimization of functionally lateral graded foam-filled tubes, Mater. Des., vol. 44, pp. 414–428, 2013. DOI: 10.1016/j.matdes.2012.08.033.
  • X. Deng, S. Qin, and J. Huang, Energy absorption characteristics of axially varying thickness lateral corrugated tubes under axial impact loading, Thin-Walled Struct., vol. 163, p. 107721, 2021. DOI: 10.1016/j.tws.2021.107721.
  • P. Xu, et al., Multi-objective uncertain optimization with an ellipsoid-based model of a centrally symmetrical square tube with diaphragms for subways, Struct. Multidisc. Optim., vol. 64, no. 4, pp. 2789–2804, 2021. DOI: 10.1007/s00158-021-02990-4.
  • M. Emadi, H. Beheshti, and M. Heidari-Rarani, Multi-objective optimization of hybrid aluminum–composite tube under axial crushing, Int. J. Appl. Mech., vol. 12, no. 04, p. 2050042, 2020. DOI: 10.1142/S1758825120500428.
  • J. Fang, Y. Gao, G. Sun, Y. Zhang, and Q. Li, Parametric analysis and multiobjective optimization for functionally graded foam-filled thin-wall tube under lateral impact, Comput. Mater. Sci., vol. 90, pp. 265–275, 2014. DOI: 10.1016/j.commatsci.2014.03.044.
  • Q. Gao, L. Wang, Y. Wang, and C. Wang, Crushing analysis and multiobjective crashworthiness optimization of foam-filled ellipse tubes under oblique impact loading, Thin-Walled Struct., vol. 100, pp. 105–112, 2016. DOI: 10.1016/j.tws.2015.11.020.
  • S. Xie, H. Li, W. Yang, and N. Wang, Crashworthiness optimisation of a composite energy-absorbing structure for railway vehicles, Struct. Multidisc. Optim., vol. 57, no. 4, pp. 1793–1807, 2018. DOI: 10.1007/s00158-017-1829-7.
  • M. Emadi, H. Beheshti, and M. Heidari-Rarani, Thickness effect study on the crushing characteristics of aluminum and composite tubes: Numerical analysis and multi-objective optimization, Mech. Adv. Mater. Struct., vol. 28, no. 24, pp. 2585–2594, 2021. DOI: 10.1080/15376494.2020.1747667.
  • C. Xie and D. Wang, Multi-objective cross-sectional shape and size optimization of S-rail using hybrid multi-criteria decision-making method, Struct. Multidisc. Optim., vol. 62, no. 6, pp. 3477–3492, 2020. DOI: 10.1007/s00158-020-02651-y.
  • P. Wang, P. Meng, J.-Y. Zhai, and Z.-Q. Zhu, A hybrid method using experiment design and grey relational analysis for multiple criteria decision making problems, Knowl.-Based Syst., vol. 53, pp. 100–107, 2013. DOI: 10.1016/j.knosys.2013.08.025.
  • F. Xu, S. Zhang, K. Wu, and Z. Dong, Multi-response optimization design of tailor-welded blank (TWB) thin-walled structures using Taguchi-based gray relational analysis, Thin-Walled Struct., vol. 131, pp. 286–296, 2018. DOI: 10.1016/j.tws.2018.07.007.
  • K. Yu, Y. Liu, and Z. Zhang, Energy-absorbing analysis and reliability-based multiobjective optimization design of graded thickness B pillar with grey relational analysis, Thin-Walled Struct., vol. 145, p. 106364, 2019. DOI: 10.1016/j.tws.2019.106364.
  • R. Rao and V. Yadava, Multi-objective optimization of Nd: YAG laser cutting of thin superalloy sheet using grey relational analysis with entropy measurement, Opt Laser Technol., vol. 41, no. 8, pp. 922–930, 2009. DOI: 10.1016/j.optlastec.2009.03.008.
  • S. Zhang and F. Xu, A two-stage hybrid optimization for honeycomb-type cellular structures under out-of-plane dynamic impact, Appl. Math. Model., vol. 80, pp. 755–770, 2020. DOI: 10.1016/j.apm.2019.11.052.
  • M. Jahani, H. Beheshti, and M. Heidari-Rarani, Effects of geometry, triggering and foam-filling on crashworthiness behaviour of a cylindrical composite crash box, IJAME, vol. 16, no. 2, pp. 6568–6587, 2019. DOI: 10.15282/ijame.16.2.2019.8.0495.
  • J. Fang, G. Sun, N. Qiu, N. H. Kim, and Q. Li, On design optimization for structural crashworthiness and its state of the art, Struct. Multidisc. Optim., vol. 55, no. 3, pp. 1091–1119, 2017. DOI: 10.1007/s00158-016-1579-y.
  • L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties, 2nd ed., Cambridge University Press, Cambridge, 1997.
  • P. Xu, X. Xiao, S. Yao, and L. Kong, Study on effect of offset defect on mechanical property of honeycomb structures, Structures, vol. 34, pp. 275–285, 2021. DOI: 10.1016/j.istruc.2021.07.073.
  • Standardization Administration of the People's Republic of China. Test Method for Flatwise Compression Properties of Sandwich Construction or Cores: GB/T 1453 − 2005[S], China Standards Press, Beijing, 2005. (In Chinese).
  • ASTM International, ASTM C365/C365M: Standard test method for flatwise compressive properties of sandwich cores, 2016c.
  • T. Wierzbicki, Crushing analysis of metal honeycombs, Int. J. Impact Eng., vol. 1, no. 2, pp. 157–174, 1983. DOI: 10.1016/0734-743X(83)90004-0.
  • S. Xie and H. Zhou, Analysis and optimisation of parameters influencing the out-of-plane energy absorption of an aluminium honeycomb, Thin-Walled Struct., vol. 89, pp. 169–177, 2015. DOI: 10.1016/j.tws.2014.12.024.
  • S. Xie and H. Zhou, Impact characteristics of a composite energy absorbing bearing structure for railway vehicles, Compos. B: Eng., vol. 67, pp. 455–463, 2014. DOI: 10.1016/j.compositesb.2014.08.019.
  • S. Yang, Y. Sun, and C. Qi, Performance assessment and optimal design of hybrid material bumper for pedestrian lower extremity protection, Int. J. Mech. Sci., vol. 165, p. 105210, 2020. DOI: 10.1016/j.ijmecsci.2019.105210.
  • M. Emadi, H. Beheshti, M. Heidari-Rarani, and F.H. Aboutalebi, Experimental study of collapse mode and crashworthiness response of tempered and annealed aluminum tubes under axial compression, J. Mech. Sci. Technol., vol. 33, no. 5, pp. 2067–2074, 2019. DOI: 10.1007/s12206-019-0410-2.
  • Z. Li, W. Ma, S. Yao, and P. Xu, Crashworthiness performance of corrugation-reinforced multicell tubular structures, Int. J. Mech. Sci., vol. 190, p. 106038, 2021. DOI: 10.1016/j.ijmecsci.2020.106038.
  • J. Xing, et al., Crashworthiness optimisation of a step-like bi-tubular energy absorber for subway vehicles, Int. J. Crashworthiness, vol. 25, no. 3, pp. 252–262, 2020. DOI: 10.1080/13588265.2019.1577522.
  • T. Wierzbicki and W. Abramowicz, On the crushing mechanics of thin-walled structures, 1983.
  • S. Reid and T. Reddy, Static and dynamic crushing of tapered sheet metal tubes of rectangular cross-section, Int. J. Mech. Sci., vol. 28, no. 9, pp. 623–637, 1986. DOI: 10.1016/0020-7403(86)90077-9.
  • P. Xu, et al., Theoretical development and multi-objective optimisation of a double-tapered rectangular tube with diaphragms, Int. J. Crashworthiness, vol. 27, no. 1, pp. 206–220, 2022. DOI: 10.1080/13588265.2020.1785109.
  • W. Abramowicz and N. Jones, Dynamic axial crushing of circular tubes, Int. J. Impact Eng., vol. 2, no. 3, pp. 263–281, 1984. DOI: 10.1016/0734-743X(84)90010-1.
  • W. Abramowicz and N. Jones, Dynamic axial crushing of square tubes, Int. J. Impact Eng., vol. 2, no. 2, pp. 179–208, 1984. DOI: 10.1016/0734-743X(84)90005-8.
  • Technical Committee CEN/TC 256 Railway Applications, BS EN 15227-2008 Railway Applications: Crashworthiness Requirements for Railway Vehicle Bodies, British Standard Institution, London, 2008.
  • W. Khan, B. Ullah, and Z. Ullah, The localized radial basis functions for parameterized level set based structural optimization, Eng. Anal. Bound. Elem., vol. 113, pp. 296–305, 2020. DOI: 10.1016/j.enganabound.2020.01.008.
  • T.-T. Wong, W.-S. Luk, and P.-A. Heng, Sampling with Hammersley and Halton points, J. Graph. Tools, vol. 2, no. 2, pp. 9–24, 1997. DOI: 10.1080/10867651.1997.10487471.
  • D. Chen, L. Jing, and F. Yang, Optimal design of sandwich panels with layered-gradient aluminum foam cores under air-blast loading, Compos. B: Eng., vol. 166, pp. 169–186, 2019. DOI: 10.1016/j.compositesb.2018.11.125.
  • M. Hosseini, et al., Optimization of FX-70 refrigerant evaporative heat transfer and fluid flow characteristics inside the corrugated tubes using multi-objective genetic algorithm, Chin. J. Chem. Eng., vol. 28, no. 8, pp. 2142–2151, 2020. DOI: 10.1016/j.cjche.2020.05.036.
  • E. İ. Albak, Crashworthiness design for multi-cell circumferentially corrugated thin-walled tubes with sub-sections under multiple loading conditions, Thin-Walled Struct., vol. 164, p. 107886, 2021. DOI: 10.1016/j.tws.2021.107886.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.