351
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Design of mechanically compatible lattice structures cancellous bone fabricated by fused filament fabrication of Z-ABS material

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &
Pages 2269-2283 | Received 27 Oct 2021, Accepted 12 Mar 2022, Published online: 24 Mar 2022

References

  • Xuewen. Chen, et al., Design and mechanical compatibility of nylon bionic cancellous bone fabricated by selective laser sintering, Material., vol. 14, no. 8, pp. 1965, 2021. DOI: 10.3390/ma14081965.
  • Yuting. Lv, et al., Metal material, properties and design methods of porous biomedical scaffolds for additive manufacturing: A review, Front. Bioeng. Biotechnol., vol. 9, no. March, pp. 1–16, 2021. DOI: 10.3389/fbioe.2021.641130.
  • Salah. Ramtani, H. Bennaceur, and T. Outtas, Elastic bone-column buckling including bone density gradient effect within the context of adaptive elasticity, IRBM., vol. 36, no. 5, pp. 267–277, 2015. DOI: 10.1016/j.irbm.2015.07.004.
  • Stefania. Pagani, et al., Mechanical and in vitro biological properties of uniform and graded Cobalt-chrome lattice structures in orthopedic implants, J. Biomed. Mater. Res. - Part B Appl. Biomater., pp. 1–13, 2021. DOI: 10.1002/jbm.b.34857.
  • F. S. L. Bobbert, et al., Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties, Acta Biomater., vol. 53, pp. 572–584, 2017. DOI: 10.1016/j.actbio.2017.02.024.
  • J. Van Der Stok, et al., Full regeneration of segmental bone defects using porous titanium implants loaded with Bmp-2 containing fibrin gels, Eur Cell Mater., vol. 29, pp. 141–154, 2015. DOI: 10.22203/ecm.v029a11.
  • Jun. Li, X. Cui, G. J. Hooper, K. S. Lim, and T. B. F. Woodfield, Rational design, bio-functionalization and biological performance of hybrid additive manufactured titanium implants for orthopaedic applications: A review, J. Mech. Behav. Biomed. Mater., vol. 105, pp. 103671, 2020. DOI: 10.1016/j.jmbbm.2020.103671.
  • Youwen. Yang, et al., Additive manufacturing of bone scaffolds, Int. J. Bioprinting., vol. 5, no. 1, pp. 1–25, 2019. DOI: 10.18063/IJB.v5i1.148.
  • Yoshiki. Oshida, Bioscience and bioengineering of titanium materials, Biosci. Bioeng. Titan. Mater., 2007. DOI: 10.1016/B978-0-08-045142-8.X5000-2.
  • OlaLA. Harrysson, O. Cansizoglu, D. J. Marcellin-Little, D. R. Cormier, and H. A. West, Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology, Mater. Sci. Eng. C., vol. 28, no. 3, pp. 366–373, 2008. DOI: 10.1016/j.msec.2007.04.022.
  • Zaki. Alomar, and F. Concli, A review of the selective laser melting lattice structures and their numerical models, Adv. Eng. Mater., vol. 22, no. 12, pp. 2000611, 2020. DOI: 10.1002/adem.202000611.
  • Chengxiong. Lin, Y. Wang, Z. Huang, T. Wu, and W. Xu, Advances in filament structure of 3D bioprinted biodegradable bone repair scaffolds, Int. J. Bioprint., vol. 7, no. iv, pp. 43–64, 2021.
  • Tullio. Genova, I. Roato, M. Carossa, C. Motta, D. Cavagnetto, and F. Mussano, Advances on bone substitutes through 3D bioprinting, IJMS., vol. 21, no. 19, pp. 7012–7028, 2020. DOI: 10.3390/ijms21197012.
  • EbrahimAA. Alkebsi, H. Ameddah, T. Outtas, and A. Almutawakel, Design of graded lattice structures in turbine blades using topology optimization, Int. J. Comput. Integr. Manuf., vol. 34, no. 4, pp. 370–384, 2021. DOI: 10.1080/0951192X.2021.1872106.
  • AliaaM. Abou-Ali, O. Al-Ketan, R. Rowshan, and R. Abu Al-Rub, Mechanical response of 3D printed bending-dominated ligament-based triply periodic cellular polymeric solids, J. Mater Eng Perform., vol. 28, no. 4, pp. 2316–2326, 2019. DOI: 10.1007/s11665-019-03982-8.
  • Oraib. Al-Ketan, and R. K. Abu Al-Rub, Multifunctional mechanical metamaterials based on triply periodic minimal surface lattices, Adv. Eng. Mater., vol. 21, no. 10, pp. 1900524, 2019. DOI: 10.1002/adem.201900524.
  • Ksawery. Szykiedans, and W. Credo, Mechanical properties of FDM and SLA low-cost 3-D prints, Procedia Eng., vol. 136, pp. 257–262, 2016. DOI: 10.1016/j.proeng.2016.01.207.
  • Anatolie. Timercan, V. Sheremetyev, and V. Brailovski, Mechanical properties and fluid permeability of gyroid and diamond lattice structures for intervertebral devices: functional requirements and comparative analysis, Sci Technol Adv Mater., vol. 22, no. 1, pp. 285–300, 2021. DOI: 10.1080/14686996.2021.1907222.
  • Chengxing. Yang, P. Xu, S. Xie, and S. Yao, Mechanical performances of four lattice materials guided by topology optimisation, Scr. Mater., vol. 178, pp. 339–345, 2020. DOI: 10.1016/j.scriptamat.2019.11.060.
  • AlmoutazBellah. Alsamawi, N. Boumechra, and K. Hamdaoui, Numerical parametric study of fully encased composite columns subjected to cyclic loading, Civ Eng J., vol. 8, no. 1, pp. 45–59, 2022. DOI: 10.28991/CEJ-2022-08-01-04.
  • Yogesh. Tripathi, M. Shukla, and A. D. Bhatt, Implicit-function-based design and additive manufacturing of triply periodic minimal surfaces scaffolds for bone tissue engineering, J. of Materi Eng and Perform., vol. 28, no. 12, pp. 7445–7451, 2019. DOI: 10.1007/s11665-019-04457-6.
  • Yuexin. Du, et al., Laser additive manufacturing of bio-inspired lattice structure: Forming quality, microstructure and energy absorption behavior, Mater. Sci. Eng. A., vol. 773, no. vember 2019, pp. 138857, 2020. DOI: 10.1016/j.msea.2019.138857.
  • Fuping. Li, J. Li, G. Xu, G. Liu, H. Kou, and L. Zhou, Fabrication, pore structure and compressive behavior of anisotropic porous titanium for human trabecular bone implant applications, J Mech Behav Biomed Mater., vol. 46, pp. 104–114, 2015. DOI: 10.1016/j.jmbbm.2015.02.023.
  • YunFei. Fu, B. Rolfe, L. N. S. Chiu, Y. Wang, X. Huang, and K. Ghabraie, Design and experimental validation of self-supporting topologies for additive manufacturing, Virtual Phys. Prototyp., vol. 14, no. 4, pp. 382–394, 2019. DOI: 10.1080/17452759.2019.1637023.
  • Tobias. Maconachie, et al., The compressive behaviour of ABS gyroid lattice structures manufactured by fused deposition modelling, Int J Adv Manuf Technol., vol. 107, no. 11-12, pp. 4449–4467, 2020. DOI: 10.1007/s00170-020-05239-4.
  • Shuo. Zhang, S. Vijayavenkataraman, W. F. Lu, and J. Y. H. Fuh, A review on the use of computational methods to characterize, design, and optimize tissue engineering scaffolds, with a potential in 3D printing fabrication, J Biomed Mater Res B Appl Biomater., vol. 107, no. 5, pp. 1329–1351, 2019. DOI: 10.1002/jbm.b.34226.
  • Jayanthi. Parthasarathy, B. Starly, S. Raman, and A. Christensen, Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM), J Mech Behav Biomed Mater., vol. 3, no. 3, pp. 249–259, 2010. DOI: 10.1016/j.jmbbm.2009.10.006.
  • B. E. I. 604: 1999. Plastics-determination of compressive properties. British Standard.
  • I. Diamant, R. Shahar, Y. Masharawi, and A. Gefen, A method for patient-specific evaluation of vertebral cancellous bone strength: In vitro validation, Clin Biomech (Bristol, Avon)., vol. 22, no. 3, pp. 282–291, 2007. DOI: 10.1016/j.clinbiomech.2006.10.005.
  • RyanE. Tomlinson, and M. J. Silva, Skeletal blood flow in bone repair and maintenance, Bone Res., vol. 1, no. 4, pp. 311–322, 2013. DOI: 10.4248/BR201304002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.