737
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Effect of geometric configuration on compression behavior of 3D-printed polymeric triply periodic minimal surface sheets

, , , , & ORCID Icon
Pages 2304-2314 | Received 11 Nov 2021, Accepted 12 Mar 2022, Published online: 01 Apr 2022

References

  • R. Miralbes, D. Ranz, F. J. Pascual, D. Zouzias, and M. Maza, Characterization of additively manufactured triply periodic minimal surface structures under compressive loading, Mech. Adv. Mater. Struct., pp. 1–15, 2020. DOI: 10.1080/15376494.2020.1842948.
  • S. Higuera, R. Miralbes, and D. Ranz, Mechanical properties and energy–absorption capabilities of thermoplastic sheet gyroid structures, Mech. Adv. Mater. Struct., pp. 1–15, 2021. DOI: 10.1080/15376494.2021.1919803.
  • R. Miralbes, S. Higuera, D. Ranz, and J. A. Gomez, Comparative analysis of mechanical properties and energy absorption capabilities of functionally graded and non-graded thermoplastic sheet gyroid structures, Mech. Adv. Mater. Struct., pp. 1–14, 2021. DOI: 10.1080/15376494.2021.1949509.
  • Z. Wang, Z. Guo, Z. Li, and K. Zeng, Coupling and scaling effect for low frequency broadband sound absorption via vertex-based hierarchy, Appl. Phys. Lett., vol. 119, no. 17, pp. 171903, 2021. DOI: 10.1063/5.0065278.
  • Z. Li, Z. Wang, Z. Guo, X. Wang, and X. Liang, Ultra-broadband sound absorption of a hierarchical acoustic metamaterial at high temperatures, Appl. Phys. Lett., vol. 118, no. 16, pp. 161903, 2021. DOI: 10.1063/5.0044656.
  • L. Shen, Z. Wang, X. Wang, and K. Wei, Negative Poisson’s ratio and effective Young’s modulus of a vertex-based hierarchical re-entrant honeycomb structure, Int. J. Mech. Sci., vol. 206, pp. 106611, 2021. DOI: 10.1016/j.ijmecsci.2021.106611.
  • R. Zhong, X. Ren, X. Zhang, C. Luo, Y. Zhang, and Y. Xie, Mechanical properties of concrete composites with auxetic single and layered honeycomb structures, Constr. Build. Mater., vol. 322, pp. 126453, 2022. DOI: 10.1016/j.conbuildmat.2022.126453.
  • W. Jiang, X. Ren, S. Wang, X. Zhang, X. Zhang, C. Luo, Y. Xie, F. Scarpa, A. Alderson, and K. E. Evans, Manufacturing, characteristics and applications of auxetic foams: a state-of-the-art review, Compos. Part B-Eng., vol. 235, pp. 109733, 2022. DOI: 10.1016/j.compositesb.2022.109733.
  • X. Zhang, X. Ren, W. Jiang, X. Zhang, C. Luo, Y. Zhang, and Y. Xie, A novel auxetic chiral lattice composite: experimental and numerical study, Compos. Struct., vol. 282, pp. 115043, 2022. DOI: 10.1016/j.compstruct.2021.115043.
  • Z. Wang, X. Wang, T. Gao, and C. Shi, Mechanical behavior and deformation mechanism of triply periodic minimal surface sheet under compressive loading, Mech. Adv. Mater. Struct., vol. 28, no. 19, pp. 2057–2069, 2021. DOI: 10.1080/15376494.2020.1829756.
  • L. Zhang, S. Feih, S. Daynes, S. Chang, M. Y. Wang, J. Wei, and W. F. Lu, Energy absorption characteristics of metallic triply periodic minimal surface sheet structures under compressive loading, Addit. Manuf., vol. 23, pp. 505–515, 2018. DOI: 10.1016/j.addma.2018.08.007.
  • X. Li, X. Yu, and W. Zhai, Additively manufactured deformation-recoverable and broadband sound-absorbing microlattice inspired by the concept of traditional perforated panels, Adv. Mater., vol. 33, no. 44, pp. 2104552, 2021. DOI: 10.1002/adma.202104552.
  • S. Zhao, S. Li, W. Hou, Y. Hao, R. Yang, and R. D. K. Misra, The influence of cell morphology on the compressive fatigue behavior of Ti-6Al-4V meshes fabricated by electron beam melting, J. Mech. Behav. Biomed. Mater., vol. 59, pp. 251–264, 2016. DOI: 10.1016/j.jmbbm.2016.01.034.
  • M. Keshavarzan, M. Kadkhodaei, M. Badrossamay, and M. R. Karamooz Ravari, Investigation on the failure mechanism of triply periodic minimal surface cellular structures fabricated by Vat photopolymerization additive manufacturing under compressive loadings, Mech. Mater., vol. 140, pp. 103150, 2020. DOI: 10.1016/j.mechmat.2019.103150.
  • Y. Zhang, M. T. Hsieh, and L. Valdevit, Mechanical performance of 3D printed interpenetrating phase composites with spinodal topologies, Compos. Struct., vol. 263, pp. 113693, 2021. DOI: 10.1016/j.compstruct.2021.113693.
  • L. Han, and S. Che, An overview of materials with triply periodic minimal surfaces and related geometry: from biological structures to self-assembled systems, Adv. Mater., vol. 30, no. 17, pp. 1705708, 2018. DOI: 10.1002/adma.201705708.
  • O. Al-Ketan, and R. K. Abu Al-Rub, Multifunctional mechanical metamaterials based on triply periodic minimal surface lattices, Adv. Eng. Mater., vol. 21, no. 10, pp. 1900524, 2019. DOI: 10.1002/adem.201900524.
  • L. Yuan, S. Ding, and C. Wen, Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: a review, Bioact. Mater., vol. 4, no. 1, pp. 56–70, 2019. DOI: 10.1016/j.bioactmat.2018.12.003.
  • D. Sharma, and S. S. Hiremath, Additively manufactured mechanical metamaterials based on triply periodic minimal surfaces: performance, challenges, and application, Mech. Adv. Mater. Struct., pp. 1–31, 2021. DOI: 10.1080/15376494.2021.1948151.
  • S. Evsevleev, T. Mishurova, D. Khrapov, A. Paveleva, D. Meinel, R. Surmenev, M. Surmeneva, A. Koptyug, and G. Bruno, X-ray computed tomography procedures to quantitatively characterize the morphological features of triply periodic minimal surface structures, Materials, vol. 14, no. 11, pp. 3002, 2021. DOI: 10.3390/ma14113002.
  • D. Khrapov, M. Kozadayeva, K. Manabaev, A. Panin, W. Sjöström, A. Koptyug, T. Mishurova, S. Evsevleev, D. Meinel, G. Bruno, D. Cheneler, R. Surmenev, and M. Surmeneva, Different approaches for manufacturing Ti-6Al-4V alloy with triply periodic minimal surface sheet-based structures by electron beam melting, Materials, vol. 14, no. 17, pp. 4912, 2021. DOI: 10.3390/ma14174912.
  • A. Ataee, Y. Li, D. Fraser, G. Song, and C. Wen, Anisotropic Ti-6Al-4V gyroid scaffolds manufactured by electron beam melting (EBM) for bone implant applications, Mater. Design., vol. 137, pp. 345–354, 2018. DOI: 10.1016/j.matdes.2017.10.040.
  • T. Maconachie, M. Leary, B. Lozanovski, X. Zhang, M. Qian, O. Faruque, and M. Brandt, SLM lattice structures: properties, performance, applications and challenges, Mater. Design., vol. 183, pp. 108137, 2019. DOI: 10.1016/j.matdes.2019.108137.
  • X. Guo, J. Ding, X. Li, S. Qu, X. Song, J. Y. H. Fuh, W. F. Lu, and W. Zhai, Enhancement in the mechanical behaviour of a Schwarz Primitive periodic minimal surface lattice structure design, Int. J. Mech. Sci., vol. 216, pp. 106977, 2022. DOI: 10.1016/j.ijmecsci.2021.106977.
  • X. Li, L. Xiao, and W. Song, Compressive behavior of selective laser melting printed Gyroid structures under dynamic loading, Addit. Manuf., vol. 46, pp. 102054, 2021. DOI: 10.1016/j.addma.2021.102054.
  • Y. Liang, W. Zhou, Y. Liu, Z. Li, Y. Yang, H. Xi, and Z. Wu, Energy absorption and deformation behavior of 3D printed triply periodic minimal surface stainless steel cellular structures under compression, Steel Res. Int., vol. 92, no. 3, pp. 2000411, 2021. DOI: 10.1002/srin.202000411.
  • S. Wang, Z. Shi, L. Liu, X. Zhou, L. Zhu, and Y. Hao, The design of Ti6Al4V primitive surface structure with symmetrical gradient of pore size in biomimetic bone scaffold, Mater. Design., vol. 193, pp. 108830, 2020. DOI: 10.1016/j.matdes.2020.108830.
  • A. Alhammadi, O. Al-Ketan, K. A. Khan, M. Ali, R. Rowshan, and R. K. Abu Al-Rub, Microstructural characterization and thermomechanical behavior of additively manufactured AlSi10Mg sheet cellular materials, Mat. Sci. Eng. A-Struct., vol. 791, pp. 139714, 2020. DOI: 10.1016/j.msea.2020.139714.
  • S. Catchpole-Smith, R. R. J. Sélo, A. W. Davis, I. A. Ashcroft, C. J. Tuck, and A. Clare, Thermal conductivity of TPMS lattice structures manufactured via laser powder bed fusion, Addit. Manuf., vol. 30, pp. 100846, 2019. DOI: 10.1016/j.addma.2019.100846.
  • X. Zhang, X. Yan, G. Fang, and M. Liu, Biomechanical influence of structural variation strategies on functionally graded scaffolds constructed with triply periodic minimal surface, Addit. Manuf., vol. 32, pp. 101015, 2020. DOI: 10.1016/j.addma.2019.101015.
  • P. Karimipour-Fard, A. H. Behravesh, H. Jones-Taggart, R. Pop-Iliev, and G. Rizvi, Effects of design, porosity and biodegradation on mechanical and morphological properties of additive-manufactured triply periodic minimal surface scaffolds, J. Mech. Behav. Biomed. Mater., vol. 112, pp. 104064, 2020. DOI: 10.1016/j.jmbbm.2020.104064.
  • Z. Qin, G. S. Jung, M. J. Kang and, M. J. Buehler, The mechanics and design of a lightweight three-dimensional graphene assembly, Sci. Adv., vol. 3, no. 1, pp. e1601536, 2021.
  • A. Mishra, H. Chavan, and A. Kumar, Effect of material variation on the uniaxial compression behavior of FDM manufactured polymeric TPMS lattice materials, Mater. Today-Proc., vol. 46, pp. 7752–7759, 2021. DOI: 10.1016/j.matpr.2021.02.276.
  • S. M. Sajadi, L. Vásárhelyi, R. Mousavi, A. H. Rahmati, Z. Kónya, Á. Kukovecz, T. Arif, T. Filleter, R. Vajtai, P. Boul, Z. Pang, T. Li, C. S. Tiwary, M. M. Rahman, and P. M. Ajayan, Damage-tolerant 3D-printed ceramics via conformal coating, Sci. Adv., vol. 7, no. 28, pp. eabc5028, 2021.
  • S. Z. Khan, S. H. Masood, E. Ibrahim, and Z. Ahmad, Compressive behaviour of Neovius Triply Periodic Minimal Surface cellular structure manufactured by fused deposition modelling, Virtual Phys. Prototy., vol. 14, no. 4, pp. 360–370, 2019. DOI: 10.1080/17452759.2019.1615750.
  • S. Rajagopalan, and R. A. Robb, Schwarz meets Schwann: design and fabrication of biomorphic and durataxic tissue engineering scaffolds, Med. Image Anal., vol. 10, no. 5, pp. 693–712, 2006. DOI: 10.1016/j.media.2006.06.001.
  • D. W. Abueidda, M. Bakir, R. K. Abu Al-Rub, J. S. Bergström, N. A. Sobh, and I. Jasiuk, Mechanical properties of 3D printed polymeric cellular materials with triply periodic minimal surface architectures, Mater. Design., vol. 122, pp. 255–267, 2017. DOI: 10.1016/j.matdes.2017.03.018.
  • Y. Lu, W. Zhao, Z. Cui, H. Zhu, and C. Wu, The anisotropic elastic behavior of the widely-used triply-periodic minimal surface based scaffolds, J. Mech. Behav. Biomed. Mater., vol. 99, pp. 56–65, 2019. DOI: 10.1016/j.jmbbm.2019.07.012.
  • D. W. Abueidda, M. Elhebeary, C. Shiang, R. K. Abu Al-Rub, and I. M. Jasiuk, Compression and buckling of microarchitectured Neovius-lattice, Extreme Mech. Lett., vol. 37, pp. 100688, 2020. DOI: 10.1016/j.eml.2020.100688.
  • H. Yin, Z. Liu, J. Dai, G. Wen, and C. Zhang, Crushing behavior and optimization of sheet-based 3D periodic cellular structures, Compos. Part B-Eng., vol. 182, pp. 107565, 2020. DOI: 10.1016/j.compositesb.2019.107565.
  • U. Zerbst, G. Bruno, J. Buffière, T. Wegener, T. Niendorf, T. Wu, X. Zhang, N. Kashaev, G. Meneghetti, N. Hrabe, M. Madia, T. Werner, K. Hilgenberg, M. Koukolíková, R. Procházka, J. Džugan, B. Möller, S. Beretta, A. Evans, R. Wagener, and K. Schnabel, Damage tolerant design of additively manufactured metallic components subjected to cyclic loading: state of the art and challenges, Prog. Mater. Sci., vol. 121, pp. 100786, 2021. DOI: 10.1016/j.pmatsci.2021.100786.
  • R. Laquai, B. R. Müller, K. Galina, G. Requena, J. Haubrich, and G. Bruno, Classification of defect types in SLM Ti-6Al-V4 by X-ray refraction topography, Matls. Perf. Charact., vol. 9, no. 1, pp. 20190080–20190093, 2020. DOI: 10.1520/MPC20190080.
  • M. Alizadeh-Osgouei, Y. Li, A. Vahid, A. Ataee, and C. Wen, High strength porous PLA gyroid scaffolds manufactured via fused deposition modeling for tissue-engineering applications, Smart Mater. Med., vol. 2, pp. 15–25, 2021. DOI: 10.1016/j.smaim.2020.10.003.
  • Y. Tripathi, M. Shukla, and A.D. Bhatt, Implicit-function-based design and additive manufacturing of triply periodic minimal surfaces scaffolds for bone tissue engineering, J. Mater. Eng. Perform., vol. 28, no. 12, pp. 7445–7451, 2019. DOI: 10.1007/s11665-019-04457-6.
  • Z. Wang, X. Wang, K. Liu, J. Zhang, and Z. Lu, Crashworthiness index of honeycomb sandwich structures under low-speed oblique impact, Int. J. Mech. Sci., vol. 208, pp. 106683, 2021. DOI: 10.1016/j.ijmecsci.2021.106683.
  • Z. Wang, Z. Lei, Z. Li, K. Yuan, and X. Wang, Mechanical reinforcement mechanism of a hierarchical Kagome honeycomb, Thin. Wall. Struct., vol. 167, pp. 108235, 2021. DOI: 10.1016/j.tws.2021.108235.
  • Z. Wang, Y. Zhou, X. Wang, and K. Wei, Compression behavior of strut-reinforced hierarchical lattice—Experiment and simulation, In. J. Mech. Sci., vol. 210, pp. 106749, 2021. DOI: 10.1016/j.ijmecsci.2021.106749.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.