718
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Finite element analyses of porous dental implant designs based on 3D printing concept to evaluate biomechanical behaviors of healthy and osteoporotic bones

, , , &
Pages 2328-2340 | Received 14 Nov 2021, Accepted 12 Mar 2022, Published online: 25 Mar 2022

References

  • J. Li, J.A. Jansen, X.F. Walboomers, and J.J. van den Beucken, Mechanical aspects of dental implants and osseointegration: A narrative review, J. Mech. Behav. Biomed. Mater., vol. 103, p. 103574, 2020. DOI: 10.1016/j.jmbbm.2019.103574.
  • E. Vidal, et al., Titanium scaffolds by direct ink writing: Fabrication and functionalization to guide osteoblast behavior, Metals, vol. 10, no. 9, pp. 1118–1156, 2020. DOI: 10.3390/met10091156.
  • G.E. Romanos, R.A. Delgado-Ruiz, D. Sacks, and J.L. Calvo-Guirado, Influence of the implant diameter and bone quality on the primary stability of porous tantalum trabecular metal dental implants: An in vitro biomechanical study, Clin. Oral Implants Res., vol. 29, no. 6. pp. 649–655, Jun. 2018. DOI: 10.1111/clr.12792.
  • G. Yamako, et al. , Improving stress shielding following total hip arthroplasty by using a femoral stem made of β type Ti-33.6Nb-4Sn with a Young's modulus gradation, J. Biomech., vol. 63, pp. 135–143, Oct. 2017. DOI: 10.1016/j.jbiomech.2017.08.017.
  • S. Lascano, et al., Porous titanium for biomedical applications: Evaluation of the conventional powder metallurgy frontier and space-holder technique, Appl. Sci., vol. 9, no. 5, p. 982, 2019. DOI: 10.3390/app9050982.
  • A. Rodriguez-Contreras, M. Punset, J.A. Calero, F.J. Gil, E. Ruperez, and J.M. Manero, Powder metallurgy with space holder for porous titanium implants: A review, J. Mater. Sci. Technol., vol. 76, pp. 129–149, Jun. 2021. DOI: 10.1016/j.jmst.2020.11.005.
  • E. Liverani, G. Rogati, S. Pagani, S. Brogini, A. Fortunato, and P. Caravaggi, Mechanical interaction between additive-manufactured metal lattice structures and bone in compression: Implications for stress shielding of orthopaedic implants, J. Mech. Behav. Biomed. Mater., vol. 121, p. 104608, Sep. 2021. DOI: 10.1016/j.jmbbm.2021.104608.
  • C. Domínguez-Trujillo, et al., Improvement of the balance between a reduced stress shielding and bone ingrowth by bioactive coatings onto porous titanium substrates, Surf. Coat. Technol., vol. 338, pp. 32–37, Mar. 2018. DOI: 10.1016/j.surfcoat.2018.01.019.
  • A. Manoj, A.K. Kasar, and P.L. Menezes, Tribocorrosion of porous titanium used in biomedical applications, J. Bio- Tribo-Corros., vol. 5, no. 1, pp. 3, Mar. 2019. DOI: 10.1007/s40735-018-0194-4.
  • Z. Chen, et al., Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth, Mater. Sci. Eng. C Mater. Biol. Appl., vol. 106, p. pp. 110289, Jan. 2020. DOI: 10.1016/j.msec.2019.110289.
  • J. Li, et al., Bone ingrowth in porous titanium implants produced by 3D fiber deposition, Biomaterials, vol. 28, no. 18, pp. 2810–2820, 2007. DOI: 10.1016/j.biomaterials.2007.02.020.
  • T. Liu, et al., Effect of porous microstructures on the biomechanical characteristics of a root analogue implant: An animal study and a finite element analysis, ACS Biomater. Sci. Eng., vol. 6, no. 11, pp. 6356–6367, Nov. 2020. DOI: 10.1021/acsbiomaterials.0c01096.
  • K. Bari, and A. Arjunan, Extra low interstitial titanium based fully porous morphological bone scaffolds manufactured using selective laser melting, J. Mech. Behav. Biomed. Mater., vol. 95, pp. 1–12, Jul. 2019. DOI: 10.1016/j.jmbbm.2019.03.025.
  • S. Kholgh Eshkalak, E. Rezvani Ghomi, Y. Dai, D. Choudhury, and S. Ramakrishna, The role of three-dimensional printing in healthcare and medicine, Mater. Des., vol. 194, p. pp. 108940, Sep. 2020. DOI: 10.1016/j.matdes.2020.108940.
  • R. Kumar, M. Kumar, and J.S. Chohan, The role of additive manufacturing for biomedical applications: A critical review, J. Manuf. Process., vol. 64, pp. 828–850, Apr. 2021. DOI: 10.1016/j.jmapro.2021.02.022.
  • M. Salmi, Additive manufacturing processes in medical applications, Materials, vol. 14, no. 1, p. 191, Jan. 2021. DOI: 10.3390/ma14010191.
  • M. Revilla-León, M. Sadeghpour, and M. Özcan, A review of the applications of additive manufacturing technologies used to fabricate metals in implant dentistry, J. Prosthodont., vol. 29, no. 7, pp. 579–593, Aug. 2020. DOI: 10.1111/jopr.13212.
  • Y. Wei, Y. Hu, M. Li, and D. Li, Fabrication of Sr-functionalized micro/nano-hierarchical structure ceramic coatings on 3D printing titanium, Surf. Eng., vol. 37, no. 3, pp. 373–380, Mar. 2021. DOI: 10.1080/02670844.2020.1748349.
  • S. Ghods, et al., Powder reuse and its contribution to porosity in additive manufacturing of Ti6Al4V, Materialia, vol. 15, p. 100992, Mar. 2021. DOI: 10.1016/j.mtla.2020.100992.
  • M. Vignesh, et al., Development of biomedical implants through additive manufacturing: A review, J. Mater. Eng. Perform., vol. 30, no. 7, pp. 4735–4744, Jul. 2021. DOI: 10.1007/s11665-021-05578-7.
  • C. Tan, et al., Additive manufacturing of bio-inspired multi-scale hierarchically strengthened lattice structures, Int. J. Mach. Tools Manuf., vol. 167, p. 103764, Aug. 2021. DOI: 10.1016/j.ijmachtools.2021.103764.
  • Y. Zhang, Z. Wang, Y. Zhang, S. Gomes, and A. Bernard, Bio-inspired generative design for support structure generation and optimization in Additive Manufacturing (AM), CIRP Ann., vol. 69, no. 1, pp. 117–120, 2020. DOI: 10.1016/j.cirp.2020.04.091.
  • M. Doblaré, J.M. Garcı́a, and M.J. Gómez, Modelling bone tissue fracture and healing: A review, Eng. Fract. Mech., vol. 71, no. 13–14, pp. 1809–1840, Sep. 2004. DOI: 10.1016/j.engfracmech.2003.08.003.
  • E. Anitua, N. Larrazabal Saez de Ibarra, I. Morales Martín, and L. Saracho Rotaeche, Influence of dental implant diameter and bone quality on the biomechanics of single-crown restoration. a finite element analysis, Dent. J., vol. 9, no. 9, p. 103, 2021. DOI: 10.3390/dj9090103.
  • G. Osterhoff, E.F. Morgan, S.J. Shefelbine, L. Karim, L.M. McNamara, and P. Augat, Bone mechanical properties and changes with osteoporosis, Injury., vol. 47, pp. S11–S20, Jun. 2016. DOI: 10.1016/S0020-1383(16)47003-8.
  • R. Florencio-Silva, GRdaS. Sasso, E. Sasso-Cerri, M.J. Simões, and P.S. Cerri, Biology of bone tissue: Structure, function, and factors that influence bone cells, Biomed. Res. Int., vol. 2015, pp. 1–17, 2015. DOI: 10.1155/2015/421746.
  • S.C. Cowin , Wolff's law of trabecular architecture at remodeling equilibrium, J. Biomech. Eng., vol. 108, no. 1, pp. 83–88, Feb. 1986. DOI: 10.1115/1.3138584.
  • H.M. Frost , Skeletal structural adaptations to mechanical usage (SATMU): 1. Redefining Wolff's law: The bone modeling problem, Anat Rec., vol. 226, no. 4, pp. 403–413, Apr. 1990. DOI: 10.1002/ar.1092260402.
  • H.M. Frost, A 2003 update of bone physiology and Wolff’s Law for clinicians, Angle Orthod., vol. 74, no. 1, pp. 3–15, Feb. 2004. DOI: 10.1043/0003-3219(2004)074 < 0003:AUOBPA>2.0.CO;2.
  • G.S. Beaupré, T.E. Orr, and D.R. Carter, An approach for time-dependent bone modeling and remodeling-theoretical development, J Orthop Res., vol. 8, no. 5, pp. 651–661, Sep. 1990. DOI: 10.1002/jor.1100080506.
  • S.C. Cowin, and D.H. Hegedus, Bone remodeling I: Theory of adaptive elasticity, J Elast., vol. 6, no. 3, pp. 313–326, Jul. 1976. DOI: 10.1007/BF00041724.
  • R. Huiskes, H. Weinans, H.J. Grootenboer, M. Dalstra, B. Fudala, and T.J. Slooff, Adaptive bone-remodeling theory applied to prosthetic-design analysis, J. Biomech., vol. 20, no. 11-12, pp. 1135–1150, Jan. 1987. DOI: 10.1016/0021-9290(87)90030-3.
  • A. Madeo, D. George, T. Lekszycki, M. Nierenberger, and Y. Rémond, A second gradient continuum model accounting for some effects of micro-structure on reconstructed bone remodelling, Comptes Rendus Mécanique., vol. 340, no. 8, pp. 575–589, Aug. 2012. DOI: 10.1016/j.crme.2012.05.003.
  • A. Merdji, et al., Stress distribution in dental prosthesis under an occlusal combined dynamic loading, Mater. Des., vol. 36, pp. 705–713, Apr. 2012. DOI: 10.1016/j.matdes.2011.12.006.
  • H.M.S. Duarte, J.R. Andrade, L. M. J. S. Dinis, R.M.N. Jorge, and J. Belinha, Numerical analysis of dental implants using a new advanced discretization technique, Mech. Adv. Mater. Struct., vol. 23, no. 4, pp. 467–479, Apr. 2016. DOI: 10.1080/15376494.2014.987410.
  • D. Jia, F. Li, C. Zhang, K. Liu, and Y. Zhang, Design and simulation analysis of Lattice bone plate based on finite element method,” Mech, Adv. Mater. Struct., vol. 28, no. 13, pp. 1311–1321, Jul. 2021. DOI: 10.1080/15376494.2019.1665759.
  • D.-S. Son, H. Mehboob, and S.-H. Chang, Simulation of the bone healing process of fractured long bones applied with a composite bone plate with consideration of the blood vessel growth, Compos. Part B Eng., vol. 58, pp. 443–450, Mar. 2014. DOI: 10.1016/j.compositesb.2013.10.058.
  • H. Mehboob, et al., A novel design, analysis and 3D printing of Ti-6Al-4V alloy bio-inspired porous femoral stem, J. Mater. Sci. Mater. Med., vol. 31, no. 9, p. pp. 78, Sep. 2020. DOI: 10.1007/s10856-020-06420-7.
  • H. Mehboob, F. Ahmad, F. Tarlochan, A. Mehboob, and S.H. Chang, A comprehensive analysis of bio-inspired design of femoral stem on primary and secondary stabilities using mechanoregulatory algorithm, Biomech. Model. Mechanobiol., vol. 19, no. 6, pp. 2213–2226, Dec. 2020. DOI: 10.1007/s10237-020-01334-3.
  • A. Z. E.-A. Arab, et al., Finite-element analysis of a lateral femoro-tibial impact on the total knee arthroplasty, Comput. Methods Prog. Biomed., vol. 192, p. 105446, Aug. 2020. DOI: 10.1016/j.cmpb.2020.105446.
  • H. Mehboob, F. Tarlochan, A. Mehboob, and S.-H. Chang, Finite element modelling and characterization of 3D cellular microstructures for the design of a cementless biomimetic porous hip stem, Mater. Des., vol. 149, pp. 101–112, Jul. 2018. DOI: 10.1016/j.matdes.2018.04.002.
  • A. Benaissa, A. Merdji, M.Z. Bendjaballah, P. Ngan, and O.M. Mukdadi, Stress influence on orthodontic system components under simulated treatment loadings, Comput Methods Programs Biomed., vol. 195, pp. 105569, 2020. DOI: 10.1016/j.cmpb.2020.105569.
  • A. Mehboob, S.H.A. Rizvi, S.-H. Chang, and H. Mehboob, Comparative study of healing fractured tibia assembled with various composite bone plates, Compos. Sci. Technol., vol. 197, p. 108248, Sep. 2020. DOI: 10.1016/j.compscitech.2020.108248.
  • F. Tarlochan, H. Mehboob, A. Mehboob, and S.-H. Chang, Influence of functionally graded pores on bone ingrowth in cementless hip prosthesis: A finite element study using mechano-regulatory algorithm, Biomech. Model. Mechanobiol., vol. 17, no. 3, pp. 701–716, Jun. 2018. DOI: 10.1007/s10237-017-0987-2.
  • A. Mehboob, H. Mehboob, and S.-H. Chang, Evaluation of unidirectional BGF/PLA and Mg/PLA biodegradable composites bone plates-scaffolds assembly for critical segmental fractures healing, Compos. Part A Appl. Sci. Manuf., vol. 135, p. 105929, Aug. 2020. DOI: 10.1016/j.compositesa.2020.105929.
  • H. Mehboob, J. Kim, A. Mehboob, and S.-H. Chang, How post-operative rehabilitation exercises influence the healing process of radial bone shaft fractures fixed by a composite bone plate, Compos. Struct., vol. 159, pp. 307–315, Jan. 2017. DOI: 10.1016/j.compstruct.2016.09.081.
  • S.E. Alkhatib, F. Tarlochan, H. Mehboob, R. Singh, K.Kadirgama, and W. Harun, Finite element study of functionallygraded porous femoral stems incorporating bodycentered cubicstructure, Artif. Organs., vol. 43, no. 7, pp. E152–E164, 2019. DOI: 10.1111/aor.13444.
  • A. Mehboob, H. Mehboob, S.-H. Chang, and F. Tarlochan, Effect of composite intramedullary nails (IM) on healing of long bone fractures by means of reamed and unreamed methods, Compos. Struct., vol. 167, pp. 76–87, May 2017. DOI: 10.1016/j.compstruct.2017.01.076.
  • Y.-M. Huang, I.-C. Chou, C.-P. Jiang, Y.-S. Wu, and S.-Y. Lee, Finite element analysis of dental implant neck effects on primary stability and osseointegration in a type IV bone mandible, Biomed. Mater. Eng., vol. 24, no. 1, pp. 1407–1415, 2014. DOI: 10.3233/BME-130945.
  • P. Ausiello, et al., The role of cortical zone level and prosthetic platform angle in dental implant mechanical response: A 3D finite element analysis, Dent. Mater., vol. 37, pp. 1688-1697, Sep. 2021. DOI: 10.1016/j.dental.2021.08.022.
  • M.-D. Jeng, Y.-S. Lin, and C.-L. Lin, Biomechanical evaluation of the effects of implant neck wall thickness and abutment screw size: A 3D nonlinear finite element analysis, Appl. Sci., vol. 10, no. 10, p. 3471, May 2020. DOI: 10.3390/app10103471.
  • P. Marcián, J. Wolff, L. Horáčková, J. Kaiser, T. Zikmund, and L. Borák, Micro finite element analysis of dental implants under different loading conditions, Comput. Biol. Med., vol. 96, pp. 157–165, 2018. DOI: 10.1016/j.compbiomed.2018.03.012.
  • H. Mehboob, A. Mehboob, F. Abbassi, F. Ahmad, A.S. Khan, and S. Miran, Bioinspired porous dental implants using the concept of 3D printing to investigate the effect of implant type and porosity on patient’s bone condition, Mech. Adv. Mater. Struct., pp. 1–15, Sep. 2021. DOI: 10.1080/15376494.2021.1971347.
  • R. Kasani, B.K. Rama Sai Attili, V.K. Dommeti, A. Merdji, J.K. Biswas, and S. Roy , Stress distribution of overdenture using odd number implants - a finite element study, J. Mech. Behav. Biomed. Mater., vol. 98, no. May, pp. 369–382, 2019. DOI: 10.1016/j.jmbbm.2019.06.030.
  • C.A.A. Lemos, et al., Effect of bone quality and bone loss level around internal and external connection implants: A finite element analysis study, J. Prosthet. Dent., vol. 125, no. 1, pp. 137.e1–137.e10, 2021. DOI: 10.1016/j.prosdent.2020.06.029.
  • R.M. Jones, Deformation Theory of Plasticity; Blacksburg, Virginia, Bull Ridge Corporation, 2009.
  • C. Öhman, et al., Compressive behaviour of child and adult cortical bone, Bone, vol. 49, no. 4, pp. 769–776, 2011. DOI: 10.1016/j.bone.2011.06.035.
  • B. Liu, et al., The optimization of Ti gradient porous structure involves the finite element simulation analysis, Front. Mater., pp. 1–11, vol. 8, Jun. 2021. DOI: 10.3389/fmats.2021.642135.
  • L.C. Gerhardt, and A.R. Boccaccini, Bioactive glass and glass-ceramic scaffolds for bone tissue engineering, Materials (Basel)., vol. 3, no. 7, pp. 3867–3910, 2010. DOI: 10.3390/ma3073867.
  • E.F. Morgan, and T.M. Keaveny, Dependence of yield strain of human trabecular bone on anatomic site, J. Biomech., vol. 34, no. 5, pp. 569–577, 2001. DOI: 10.1016/S0021-9290(01)00011-2.
  • F.J. Quevedo González, et al., Mechanical performance of cementless total knee replacements: It is not all about the maximum loads, J. Orthop. Res., vol. 37, no. 2, pp. 350–357, 2019. DOI: 10.1002/jor.24194.
  • A. Mahnama, M. Tafazzoli-Shadpour, F. Geramipanah, and M. Mehdi Dehghan, Verification of the mechanostat theory in mandible remodeling after tooth extraction: Animal study and numerical modeling, J. Mech. Behav. Biomed. Mater., vol. 20, pp. 354–362, 2013. DOI: 10.1016/j.jmbbm.2013.02.013.
  • R. Korabi, K. Shemtov-Yona, A. Dorogoy, and D. Rittel, The failure envelope concept applied to the bone-dental implant system, Sci. Rep., vol. 7, no. 1, pp. 1–11, 2017. DOI: 10.1038/s41598-017-02282-2.
  • J.P.M. Kan, R.B. Judge, and J.E.A. Palamara, In vitro bone strain analysis of implant following occlusal overload, Clin. Oral Implants Res., vol. 25, no. 2, pp. 73–82, 2014. DOI: 10.1111/clr.12059.
  • K. Pałka, and R. Pokrowiecki, Porous titanium implants: A review, Adv. Eng. Mater., vol. 20, no. 5, p. 1700648, 2018. DOI: 10.1002/adem.201700648.
  • Z.J. Wally, W. van Grunsven, F. Claeyssens, R. Goodall, and G.C. Reilly, Porous titanium for dental implant applications, Metals, vol. 5, no. 4, pp. 1902–1920, 2015. DOI: 10.3390/met5041902.
  • R. Pokrowiecki, A. Mielczarek, T. Zaręba, and S. Tyski, Oral microbiome and peri-implant diseases: Where are we now?, Ther. Clin. Risk Manag., vol. 13, pp. 1529–1542, 2017. DOI: 10.2147/TCRM.S139795.
  • A. El-Gazzar, and W. Högler, Mechanisms of bone fragility: From osteogenesis imperfecta to secondary osteoporosis, Int. J. Mol. Sci., vol. 22, no. 2, pp. 618–625, 2021. DOI: 10.3390/ijms22020625.
  • T.J. Sego, Y.-T. Hsu, T.-M. G. Chu, and A. Tovar, On the significance and predicted functional effects of the crown-to-implant ratio: A finite element study of long-term implant stability using high-resolution, nonlinear numerical analysis, in ASME International Mechanical Engineering Congress and Exposition. Nov. 2016. DOI: 10.1115/IMECE2016-67654.
  • O.M. Ugarte, et al., Can maxilla and mandible bone quality explain differences in orthodontic mini-implant failures?, Biomater. Investig. Dent., vol. 8, no. 1, pp. 1–9, Jan. 2021. DOI: 10.1080/26415275.2020.1863155.
  • A. Civantos, et al., In vitro bone cell behavior on porous titanium samples: Influence of porosity by loose sintering and space holder techniques, Metals, vol. 10, no. 5, pp. 696, May 2020. DOI: 10.3390/met10050696.
  • A.M. Crovace, et al., 3D biomimetic porous titanium (Ti6Al4V ELI) scaffolds for large bone critical defect reconstruction: An experimental study in sheep, Animals, vol. 10, no. 8, p. 1389, Aug. 2020. DOI: 10.3390/ani10081389.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.