356
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Natural frequency and buckling optimization considering weight saving for hybrid graphite/epoxy-sitka spruce and graphite-flax/epoxy laminated composite plates using stochastic methods

&
Pages 2637-2650 | Received 21 Oct 2021, Accepted 30 Mar 2022, Published online: 13 Apr 2022

References

  • M. Abachizadeh, and M. Tahani, An ant colony optimization approach to multi-objective optimal design of symmetric hybrid laminates for maximum fundamental frequency and minimum cost, Struct. Multidisc. Optim., vol. 37, no. 4, pp. 367–376, 2009. DOI: 10.1007/s00158-008-0235-6.
  • C. W. Bert, Optimal design of a composite-material plate to maximize its fundamental frequency, J Sound Vib., vol. 50, no. 2, pp. 229–237, 1977. DOI: 10.1016/0022-460X(77)90357-1.
  • R. Reiss, and S. Ramachandran, Chapter 36-Maximum frequency design of symmetric angle-ply laminates. Composite Structures 4 Volume 1 Analysis and Design Studies, Editor; Marshall I. H;, Springer, Rotterdam, the Netherlands, 1987.
  • J. L. Grenestedt, Layup optimization and sensitivity analysis of the fundamental eigenfrequency of composite plates, Compos. Struct., vol. 12, no. 3, pp. 193–209, 1989. DOI: 10.1016/0263-8223(89)90022-6.
  • K. Duffy, and S. Adali, Maximum frequency design of prestressed symmetric, cross-ply laminates of hybrid construction, Adv. Des. Autom., vol. 2, pp. 477–484, 1991. DOI: 10.1115/DETC1991-0153.
  • M. S. Qatu, Free vibration of laminated composite rectangular plates, Int. J. Solids Struct., vol. 28, no. 8, pp. 941–954, 1991. DOI: 10.1016/0020-7683(91)90122-V.
  • H. Ghashochi Bargh, and M. H. Sadr, Stacking sequence optimization of composite plates for maximum fundamental frequency using particle swarm optimization algorithm, Meccanica., vol. 47, no. 3, pp. 719–730, 2012. DOI: 10.1007/s11012-011-9482-5.
  • O. Erdal, and F. O. Sonmez, Optimum design of composite laminates for maximum buckling load capacity using simulated annealing, Compos. Struct., vol. 71, no. 1, pp. 45–52, 2005. DOI: 10.1016/j.compstruct.2004.09.008.
  • S. Karakaya, and O. Soykasap, Buckling optimization of laminated composite plates using genetic algorithm and generalized pattern search algorithm, Struct. Multidisc. Optim., vol. 39, no. 5, pp. 477–486, 2009. DOI: 10.1007/s00158-008-0344-2.
  • F. Aymerich, and M. Serra, Optimization of laminate stacking sequence for maximum buckling load using the ant colony optimization (ACO) metaheuristic, Compos. Part A., vol. 39, no. 2, pp. 262–272, 2008. DOI: 10.1016/j.compositesa.2007.10.011.
  • H. A. Deveci, L. Aydin, and H. S. Artem, Buckling optimization of composite laminates using a hybrid algorithm under Puck failure criterion constraint, J. Reinf. Plast Compos., vol. 35, no. 16, pp. 1233–1247, 2016. DOI: 10.1177/0731684416646860.
  • S. Ada Li, and K. J. DUFFY, Minimum cost design of vibrating laminates by hybridization, Eng Optim., vol. 19, no. 4, pp. 255–267, 1992. DOI: 10.1080/03052159208941231.
  • S. Adali, and V. E. Verijenko, Optimum stacking sequence design of symmetric hybrid laminates undergoing free vibrations, Compos Struct., vol. 54, no. 2-3, pp. 131–138, 2001. DOI: 10.1016/S0263-8223(01)00080-0.
  • K. Lakshmi, and A. R. M. Rao, Multi-objective optimal design of laminated composite skirt using hybrid NSGA, Meccanica., vol. 48, no. 6, pp. 1431–1450, 2013. DOI: 10.1007/s11012-012-9676-5.
  • F. X. Irisarri, D. H. Bassir, N. Carrere, and J. F. Maire, Multiobjective stacking sequence optimization for laminated composite structures, Compos. Sci. Technol., vol. 69, no. 7-8, pp. 983–990, 2009. DOI: 10.1016/j.compscitech.2009.01.011.
  • A. R. M. Rao, and N. Arvind, A scatter search algorithm for stacking sequence optimisation of laminate composites, Compos. Struct., vol. 70, no. 4, pp. 383–402, 2005. DOI: 10.1016/j.compstruct.2004.09.031.
  • A. R. M. Rao, and K. Lakshmi, Discrete hybrid PSO algorithm for design of laminate composites with multiple objectives, J. Reinf. Plast Compos., vol. 30, no. 20, pp. 1703–1727, 2011. DOI: 10.1177/0731684411417198.
  • K. Lakshmi, and A. R. M. Rao, Optimal design of laminate composite plates using dynamic hybrid adaptive harmony search algorithm, J. Reinf. Plast. Compos., vol. 34, no. 6, pp. 493–518, 2015. DOI: 10.1177/0731684415574228.
  • R. Le Riche, and R. T. Haftka, Optimization of laminated stacking sequence for buckling load maximization by genetic algorithm, AIAA., vol. 31, no. 5, pp. 951–956, 1993. DOI: 10.2514/3.11710.
  • M. K. Apalak, M. Yildirim, and R. Ekici, Layer optimisation for maximum fundamental frequency of laminated composite plates for different edge conditions, Compos. Sci. Technol., vol. 68, no. 2, pp. 537–550, 2008. DOI: 10.1016/j.compscitech.2007.06.031.
  • S. Karakaya, and O. Soykasap, Natural frequency and buckling optimization of laminated hybrid composite plates using genetic algorithm and simulated annealing, Struct. Multidisc. Optim., vol. 43, no. 1, pp. 61–72, 2011. DOI: 10.1007/s00158-010-0538-2.
  • H. B. H. Gubran, and K. Gupta, Composite shaft optimization using simulated annealing, Part I: natural frequency, Int. J. Rotat. Mach., vol. 8, no. 4, pp. 275–283, 2002. DOI: 10.1155/S1023621X02000258.
  • M. Akbulut, and F. O. Sonmez, Optimum design of composite laminates for minimum thickness, Comput. Struct., vol. 86, no. 21-22, pp. 1974–1982, 2008. DOI: 10.1016/j.compstruc.2008.05.003.
  • H. Baier, M. Huber, and H. Langer, Design optimization of hybrid material structures, Struct. Multidisc. Optim., vol. 36, no. 2, pp. 203–213, 2008. DOI: 10.1007/s00158-007-0204-5.
  • U. Topal, and Ü. Uzman, Frequency optimization of laminated composite angle-ply plates with circular hole, Mater. Des., vol. 29, no. 8, pp. 1512–1517, 2008. DOI: 10.1016/j.matdes.2008.03.002.
  • Ö. Civalek, Free vibration analysis of symmetrically laminated composite plates with first-order shear deformation theory (FSDT) by discrete singular convolution method, Finite. Elem. Anal. Des., vol. 44, no. 12–13, pp. 725–731, 2008. DOI: 10.1016/j.finel.2008.04.001.
  • C. M. C. Roque, and P. A. L. S. Martins, Maximization of fundamental frequency of layered composites using differential evolution optimization, Compos. Struct., vol. 183, pp. 77–83, 2018. DOI: 10.1016/j.compstruct.2017.01.037.
  • E. Ameri, M. M. Aghdam, and M. Shakeri, Global optimization of laminated cylindrical panels based on fundamental natural frequency, Compos. Struct., vol. 94, no. 9, pp. 2697–2705, 2012. DOI: 10.1016/j.compstruct.2012.04.005.
  • L. Aydin, and H. S. Artem, Comparison of stochastic search optimization algorithms for the laminated composites under mechanical and hygrothermal loadings, J. Reinf. Plast. Compos., vol. 30, no. 14, pp. 1197–1212, 2011. DOI: 10.1177/0731684411415138.
  • O. Hasancebi, S. Carbas, E. Dogan, F. Erdal, and M. P. Saka, Comparison of non-deterministic search techniques in the optimum design of real size steel frames, Comput. Struct., vol. 88, no. 17-18, pp. 1033–1048, 2010. DOI: 10.1016/j.compstruc.2010.06.006.
  • S. Manoharan, and S. Shanmuganathan, Comparison of search mechanisms for structural optimization, Comput. Struct., vol. 73, no. 1-5, pp. 363–372, 1999. DOI: 10.1016/S0045-7949(98)00287-9.
  • M. Savran, and L. Aydin, Stochastic optimization of graphite-flax/epoxy hybrid laminated composite for maximum fundamental frequency and minimum cost, Eng. Struct., vol. 174, pp. 675–687, 2018. DOI: 10.1016/j.engstruct.2018.07.043.
  • Yousef. Hosseinzadeh, Shahin. Jalili, and Reza. Khani, Investigating the effects of flax fibers application on multi-objective optimization of laminated composite plates for simultaneous cost minimization and frequency gap maximization, J. Build Eng., vol. 32, pp. 101477, 2020. DOI: 10.1016/j.jobe.2020.101477.
  • M. Megahed, R. Abo-Bakr, and S. A. Mohamed, Optimization of hybrid natural laminated composite beams for a minimum weight and cost design, Compos. Struct., vol. 239, pp. 111984, 2020. DOI: 10.1016/j.compstruct.2020.111984.
  • P. Dumond, and N. Baddour, Experimental investigation of the mechanical properties and natural frequencies of simply supported Sitka spruce plates, Wood Sci. Technol., vol. 49, no. 6, pp. 1137–1155, 2015. DOI: 10.1007/s00226-015-0759-z.
  • J. Reddy, Mechanics of Laminated Composite Plates and Shells: theory and Analysis, 2nd ed. Boca Raton, FL. CRC Press, 2004.
  • H Irem Erten, H. Arda Deveci, H. Seçil Artem, Chapter 2 - Stochastic Optimization Methods. Designing Engineering Structures Using Stochastic Optimization Methods, CRC Press, Editors: Levent Aydin, H Seçil Artem, Selda Oterkus, Taylor & Francis, Boca Raton, 2020
  • Z. Gurdal, R. T. Haftka, and P. Hajela, New York. Design and Optimization of Laminated Composite Materials, 1st ed., John Wiley & Sons, Hoboken, NJ, 1999.
  • R. Storn, and K. Price, Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces, J. Glob. Optim., vol. 11, no. 4, pp. 341–359, 1997. DOI: 10.1023/A:1008202821328.
  • M. Savran, H. Sayi, L. Aydin, Chapter 3 - Mathematica and Optimization. Designing Engineering Structures Using Stochastic Optimization Methods, CRC Press, Editors: Levent Aydin, H Seçil Artem, Selda Oterkus, Taylor & Francis, Boca Raton, 2020
  • İ. Polatoğlu, L. Aydın, B. Ç. Nevruz, and S. Özer, A novel approach for the optimal design of a biosensor, Anal. Lett., vol. 53, no. 9, pp. 1428–1445, 2020. DOI: 10.1080/00032719.2019.1709075.
  • A. Ayvalik, and L. Aydin, Simultaneous analysis and optimum design of synthetic and vegetable fiber-reinforced composites for buckling – failure phenomena, Mech. Adv. Mater. Struct., pp. 1–10, 2021. DOI: 10.1080/15376494.2021.1958031.
  • M. Savran, Development of vibration performances of hybrid laminated composite materials by using stochastic methods, [Graduate Thesis] [Izmir]: İzmir Katip Çelebi University, 2017. https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp.
  • S. Liang, P. B. Gning, and L. Guillaumat, Quasi-static behaviour and damage assessment of flax/epoxy composites, Mater Des., vol. 67, pp. 344–353, 2015. DOI: 10.1016/j.matdes.2014.11.048.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.