149
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Thermal bending response of functionally graded magneto-electric–elastic shell employing non-polynomial model

& ORCID Icon
Pages 2882-2898 | Received 03 Jan 2022, Accepted 06 Apr 2022, Published online: 12 May 2022

References

  • S. C. Kattimani, Geometrically nonlinear vibration analysis of multiferroic composite plates and shells, Compos. Struct., vol. 163, pp. 185–194, 2017. DOI: 10.1016/j.compstruct.2016.12.021.
  • D. Hasanyan, et al., Theoretical and experimental investigation of magnetoelectric effect for bending-tension coupled modes in magnetostrictive-piezoelectric layered composites, J. Appl. Phys., vol. 112, no. 1, pp. 013908, 2012. DOI: 10.1063/1.4732130.
  • M. Arefi and A. H. Soltan Arani, Higher order shear deformation bending results of a magnetoelectrothermoelastic functionally graded nanobeam in thermal, mechanical, electrical, and magnetic environments, Mech. Based Des. Struct. Mach., vol. 46, no. 6, pp. 669–692, 2018. DOI: 10.1080/15397734.2018.1434002.
  • C. L. Zhang, J. S. Yang, and W. Q. Chen, Magnetoelectric effects in laminated multiferroic shells, JAE, vol. 28, no. 4, pp. 441–454, 2008. DOI: 10.3233/JAE-2008-996.
  • H. M. Wang, E. Pan, and W. Q. Chen, Magnetoelectric effects in bilayer multiferroic core–shell composites, J. Mech. Mater., vol. 1, no. 1, pp. 20160151, 2017.
  • S. C. Kattimani and M. C. Ray, Control of geometrically nonlinear vibrations of functionally graded magneto-electric–elastic plates, Int. J. Mech. Sci., vol. 99, pp. 154–167, 2015. DOI: 10.1016/j.ijmecsci.2015.05.012.
  • M. Vinyas and S. C. Kattimani, Static analysis of stepped functionally graded magneto-electro–elastic plates in thermal environment: A finite element study, Compos. Struct., vol. 178, pp. 63–86, 2017. DOI: 10.1016/j.compstruct.2017.06.068.
  • H. H. Meuyou, F. P. Ewolo Ngak, G. E. Ntamack, and L. Azrar, A virtual layers-state-space method for 3D responses of arbitrary functionally graded magnetoelectroelastic plates, Compos. Struct., vol. 268, pp. 113782, 2021. DOI: 10.1016/j.compstruct.2021.113782.
  • R. K. Bhangale and N. Ganesan, Static analysis of simply supported functionally graded and layered magneto-electro–elastic plates, Int. J. Solids Struct., vol. 43, no. 10, pp. 3230–3253, 2006. DOI: 10.1016/j.ijsolstr.2005.05.030.
  • M. Vinyas and S. C. Kattimani, Static studies of stepped functionally graded magneto-electro–elastic beam subjected to different thermal loads, Compos. Struct., vol. 163, pp. 216–237, 2017. DOI: 10.1016/j.compstruct.2016.12.040.
  • P. Zhang, C. Qi, H. Fang, and X. Sun, A semi-analytical approach for the flexural analysis of in-plane functionally graded magneto-electro–elastic plates, Compos. Struct., vol. 250, pp. 112590, 2020. DOI: 10.1016/j.compstruct.2020.112590.
  • S. Ren, G. Meng, F. Cheng, and L. Zhou, Transient responses of functionally graded magneto-electro–elastic structures with holes in thermal environment using stabilized node based smoothed radial point interpolation method, Int. J. Mech. Sci., vol. 185, pp. 105870, 2020. DOI: 10.1016/j.ijmecsci.2020.105870.
  • X. Y. Li, H. J. Ding, and W. Q. Chen, Three-dimensional analytical solution for functionally graded magneto-electro–elastic circular plates subjected to uniform load, Compos. Struct., vol. 83, no. 4, pp. 381–390, 2008. DOI: 10.1016/j.compstruct.2007.05.006.
  • A. Kumaravel, N. Ganesan, and R. Sethuraman, Steady-state analysis of a three-layered electro-magneto–elastic strip in a thermal environment, Smart Mater. Struct., vol. 16, no. 2, pp. 282–295, 2007. DOI: 10.1088/0964-1726/16/2/006.
  • G. T. Monaco, N. Fantuzzi, F. Fabbrocino, and R. Luciano, Trigonometric solution for the bending analysis of magneto-electro–elastic strain gradient nonlocal nanoplates in hygro-thermal environment, Mathematics, vol. 9, no. 5, pp. 567–522, 2021. DOI: 10.3390/math9050567.
  • M. Vinyas and S. C. Kattimani, A finite element based assessment of static behavior of multiphase magneto-electro–elastic beams under different thermal loading, Struct. Eng. Mech., vol. 62, no. 5, pp. 519–555, 2017.
  • R. Bellman and J. Casti, Differential quadrature and long-term integration, J. Math. Anal. Appl., vol. 34, no. 2, pp. 235–238, 1971. DOI: 10.1016/0022-247X(71)90110-7.
  • F. Tornabene, N. Fantuzzi, F. Ubertini, and E. Viola, Strong formulation finite element based on differential quadrature: A survey, Appl. Mech. Rev., vol. 67, no. 2, pp. 1–55, 2015.
  • C. W. Bert and M. Malik, Differential quadrature method in computational mechanics: A review, Appl. Mech. Rev., vol. 49, no. 1, pp. 1–28, 1996. DOI: 10.1115/1.3101882.
  • E. Carrera, Multilayered shell theories accounting for Layerwise mixed description, Part 1: governing equations, AIAA J., vol. 37, no. 9, pp. 1107–1116, 1999. DOI: 10.2514/2.821.
  • H. Kraus, Thin Elastic Shells, John Willey & Sons, New York, 1967.
  • W. Soedel, Vibrations of Shells and Plates, Marcell Dekker, 2004.
  • A. W. Leissa, Vibrations of shells, NASA Sp., vol. 288, 1973.
  • E. Carrera, M. Di Gifico, P. Nali, and S. Brischetto, Refined multilayered plate elements for coupled magneto-electro–elastic analysis, Multidiscip. Model. Mater. Struct., vol. 5, no. 3, pp. 251–138, 2009. DOI: 10.1163/157361109787959859.
  • E. Carrera and A. Robaldo, Hierarchic finite elements based on a unified formulation for the static analysis of shear actuated multilayered piezoelectric plates, Multi Model Mater. Struct., vol. 6, no. 1, pp. 45–77, 2010. DOI: 10.1108/15736101011055266.
  • M. Cinefra, E. Carrera, and S. Valvano, Variable kinematic shell elements for the analysis of electro-mechanical problems, Mech. Adv. Mater. Struct., vol. 22, nos. 1–2, pp. 77–106, 2015. DOI: 10.1080/15376494.2014.908042.
  • S. Brischetto and E. Carrera, Coupled thermo-electro-mechanical analysis of smart plates embedding composite and piezoelectric layers, J. Therm. Stresses., vol. 35, no. 9, pp. 766–804, 2012. DOI: 10.1080/01495739.2012.689232.
  • M. Filippi, M. Petrolo, S. Valvano, and E. Carrera, Analysis of laminated composites and sandwich structures by trigonometric, exponential and miscellaneous polynomial and MITC9 plate element, Compos. Struct., vol. 150, pp. 103–114, 2016. DOI: 10.1016/j.compstruct.2015.12.038.
  • R. M. R. Panduro and J. L. Mantari, Hygro-thermo-mechanical behavior of classical composites, Ocean Eng., vol. 137, pp. 224–240, 2017. DOI: 10.1016/j.oceaneng.2017.03.049.
  • J. L. Mantari, I. A. Ramos, and A. M. Zenkour, A unified formulation for laminated composite and sandwich plates subjected to thermal load using various plate theories, Int. J. Appl. Mech., vol. 08, no. 08, pp. 1650087, 2016. DOI: 10.1142/S1758825116500873.
  • E. Viola, F. Tornabene, and N. Fantuzzi, Static analysis of completely doubly-curved laminated shells and panels using higher-order shear deformation theories, Compos. Struct., vol. 101, pp. 59–93, 2013. DOI: 10.1016/j.compstruct.2013.01.002.
  • E. Viola, F. Tornabene, and N. Fantuzzi, General higher order shear deformation theories for the free vibration analysis of completely doubly-curved laminated shells and panels, Compos. Struct., vol. 95, pp. 639–666, 2013. DOI: 10.1016/j.compstruct.2012.08.005.
  • Tzou H.S, Piezoelectric Shells Distributed Sensing and Control of Continua, Springer, New York, 1993.
  • A. J. M. Ferreira, C. M. C. Roque, E. Carrera, M. Cinefra, and O. Polit, Bending and free vibration of laminated plates by a layerwise collocation with radial basis functions, Mech. Adv. Mater. Struct., vol. 20, no. 8, pp. 624–637, 2013. DOI: 10.1080/15376494.2011.643282.
  • F. Tornabene, N. Fantuzzi, M. Bacciocchi, A. M. A. Neves, and A. J. M. Ferreira, MLSDQ based on RBFs for the free vibrations of laminated composite doubly-curved shells, Compos. Part B, vol. 99, pp. 30–47, 2016. DOI: 10.1016/j.compositesb.2016.05.049.
  • A. J. M. Ferreira, C. M. C. Roque, A. M. A. Neves, R. M. N. Jorge, C. M. M. Soares, and J. N. Reddy, Buckling analysis of isotropic and laminated plates by radial basis functions according to a higher-order shear deformation theory, Thin Walled Struct., vol. 49, no. 7, pp. 804–811, 2011. DOI: 10.1016/j.tws.2011.02.005.
  • C. Shu, Differential Quadrature and its Applications in Engineering, London: Springer, 2000.
  • K. Yan, Y. Zhang, H. Cai, and V. Tahouneh, Vibrational characteristics of FG porous conical shells using Donell’s shell theory, Steel Compos. Struct., vol. 35, no. 2, pp. 249–260, 2020.
  • O. Ragb, M. Mohamed, and M. S. Matbuly, Vibration analysis of magneto-electro-thermo nanobeam resting on nonlinear elastic foundation using sinc and discrete singular convolution differential quadrature method, MAS, vol. 13, no. 7, pp. 49, 2019. DOI: 10.5539/mas.v13n7p49.
  • F. Tornabene, N. Fantuzzi, E. Viola, and R. C. Batra, Stress and strain recovery for functionally graded free-form and doubly-curved sandwich shells using higher-order equivalent single layer theory, Compos. Struct., vol. 119, no. 1, pp. 67–89, 2015. DOI: 10.1016/j.compstruct.2014.08.005.
  • F. Tornabene and J. N. Reddy, FGM and laminated doubly-curved and degenerated shells resting on nonlinear elastic foundations: A GDQ solution for the static analysis with a posteriori stress and strain recovery, J Indian Inst. Sci., vol. 93, no. 4, pp. 635–688, 2013.
  • E. Viola, L. Rossetti, N. Fantuzzi, and F. Tornabene, Static analysis of functionally graded conical shells and panels using the generalized unconstrained third order theory coupled with the stress recovery, Compos. Struct., vol. 112, no. 1, pp. 44–65, 2014. DOI: 10.1016/j.compstruct.2014.01.039.
  • E. Viola, F. Tornabene, and N. Fantuzzi, Stress and strain recovery of laminated composite doubly-curved shells and panels using higher order formulations, KEM, vol. 624, pp. 205–213, 2014. DOI: 10.4028/www.scientific.net/KEM.624.205.
  • P. Kondaiah, K. Shankar, and N. Ganesan, Pyroelectric and pyromagnetic effects in behavior of magneto-electro–elastic plates, Coupled Syst Mech., vol. 2, no. 1, pp. 1–22, 2013. DOI: 10.12989/csm.2013.2.1.001.
  • A. R. Setoodeh, M. Shojaee, and P. Malekzadeh, Vibrational behavior of doubly curved smart sandwich shells with FG-CNTRC face sheets and FG porous core, Compos. Part B., vol. 165, pp. 798–822, 2019. DOI: 10.1016/j.compositesb.2019.01.022.
  • Q. Wang, S. T. Quek, C. T. Sun, and X. Liu, Analysis of piezoelectric coupled circular plates, Smart Mater. Struct., vol. 10, no. 2, pp. 229–239, 2001. DOI: 10.1088/0964-1726/10/2/308.
  • H. Sayyaadi, and M. A. A. Farsangi, An analytical solution for dynamic behavior of thick doubly curved functionally graded smart panels, Compos. Struct., vol. 107, pp. 88–102, 2014. DOI: 10.1016/j.compstruct.2013.07.039.
  • M. A. A. Farsangi and A. R. Saidi, Levy type solution for free vibration analysis of functionally graded rectangular plates with piezoelectric layers, Smart Mater. Struct., vol. 21, no. 9, pp. 094017, 2012. DOI: 10.1088/0964-1726/21/9/094017.
  • G. M. Kulikov and S. V. Plotnikova, Assessment of the sampling surfaces formulation for thermoelastic analysis of layered and functionally graded piezoelectric shells, Mech. Adv. Mater. Struct., vol. 24, no. 5, pp. 392–409, 2017. DOI: 10.1080/15376494.2016.1191098.
  • G. M. Kulikov and S. V. Plotnikova, An analytical approach to three-dimensional coupled thermoelastic analysis of functionally graded piezoelectric plates, J. Intell. Mater. Syst. Struct., vol. 28, no. 4, pp. 435–450, 2017. DOI: 10.1177/1045389X15588627.
  • D. Ballhause, M. D’Ottavio, B. Kröplin, and E. Carrera, A unified formulation to assess multilayered theories for piezoelectric plates, Compos. Struct., vol. 83, nos. 15–16, pp. 1217–1235, 2005. DOI: 10.1016/j.compstruc.2004.09.015.
  • M. Arefi, Analysis of a doubly curved piezoelectric nano shell: Nonlocal electro–elastic bending solution, Eur. J. Mech. A/Solids., vol. 70, pp. 226–237, 2018. DOI: 10.1016/j.euromechsol.2018.02.012.
  • A. G. Arani, A. H. S. Arani, and E. Haghparast, Bending analysis of magneto-electro-thermo-elastic functionally graded nano-beam based on first order shear deformation theory, Int. J. Bio-Inorgan. Hybrid Nanomater., vol. 7, no. 2, pp. 163–176, 2018.
  • F. Ebrahimi and E. Salari, Size-dependent thermo-electrical buckling analysis of functionally graded piezoelectric nanobeams, Smart Mater. Struct., vol. 24, no. 12, pp. 125007, 2015. DOI: 10.1088/0964-1726/24/12/125007.
  • M. Arefi and T. Rabczuk, A nonlocal higher order shear deformation theory for electro–elastic analysis of a piezoelectric doubly curved nano shell, Compos. Part B., vol. 168, pp. 496–510, 2019. DOI: 10.1016/j.compositesb.2019.03.065.
  • M. Arefi and M. Amabili, A comprehensive electro-magneto–elastic buckling and bending analysis three-layered doubly curved nanoshell, based on nonlocal three-dimensional theory, Compos. Struct., vol. 257, pp. 113100, 2021. DOI: 10.1016/j.compstruct.2020.113100.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.