197
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Improved thermo-mechanical-viscoelastic analysis of laminated composite structures via the enhanced Lo–Christensen–Wu theory in the laplace domain

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2899-2915 | Received 24 Mar 2022, Accepted 06 Apr 2022, Published online: 20 Apr 2022

Reference

  • R. D. Mindlin, Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates, J. Appl. Mech. – Trans. ASME., vol. 18, no. 1, pp. 31–38, 1951. DOI: 10.1115/1.4010217.
  • E. Reissner, The effect of transverse shear deformation on the bending of elastic plates, J. Appl. Mech. – Trans. ASME., vol. 12, no. 2, pp. 69–77, 1945.
  • E. Reissner, On a mixed variational theorem and on shear deformable plate theory, J Numer Methods Eng., vol. 23, no. 2, pp. 193–198, 1986. DOI: 10.1002/nme.1620230203.
  • J. M. Whitney, and A. W. Leissa, Analysis of heterogeneous anisotropic plates, J. Appl. Mech. - Trans. ASME., vol. 36, no. 2, pp. 261–266, 1969. DOI: 10.1115/1.3564618.
  • H. T. Thai, and D. H. Choi, A simple first-order shear deformation theory for laminated composite plates, Compos. Struct., vol. 106, pp. 754–763, 2013. DOI: 10.1016/j.compstruct.2013.06.013.
  • J. N. Reddy, A simple higher-order theory for laminated composite plates, J. Appl. Mech. – Trans. ASME., vol. 51, no. 4, pp. 745–752, 1984. DOI: 10.1115/1.3167719.
  • T. Kant, and B. N. Pandya, A simple finite element formulation of a higher-order theory for unsymmetrically laminated composite plates, Compos. Struct., vol. 9, no. 3, pp. 215–246, 1988. DOI: 10.1016/0263-8223(88)90015-3.
  • K. H. Lo, R. M. Christensen, and F. M. Wu, A higher-order theory of plate deformation. Part 2: Laminated plates, J. Appl. Mech. – Trans. ASME., vol. 44, no. 4, pp. 669–676, 1977. DOI: 10.1115/1.3424155.
  • E. Carrera, Evaluation of layerwise mixed theories for laminated plates analysis, AIAA J., vol. 36, no. 5, pp. 830–839, 1998. DOI: 10.2514/2.444.
  • J. L. Mantari, A. S. Oktem, and CGuedes. Soares, A new trigonometric layerwise shear deformation theory for the finite element analysis of laminated composite and sandwich plates, Comput. Struct., vol. 94–95, pp. 45–53, 2012. DOI: 10.1016/j.compstruc.2011.12.003.
  • J. L. Mantari, and C. G. Soares, Generalized layerwise HSDT and finite element formulation for symmetric laminated and sandwich composite plates, Compos. Struct., vol. 105, pp. 319–331, 2013. DOI: 10.1016/j.compstruct.2013.04.042.
  • C. H. Thai, M. Abdel Wahab, and H. Nguyen-Xuan, A layerwise C0-type higher order shear deformation theory for laminated composite and sandwich plates, CR Mecanique, vol. 346, no. 1, pp. 57–76, 2018. DOI: 10.1016/j.crme.2017.11.001.
  • K. M. Liew, Z. Z. Pan, and L. W. Zhang, An overview of layerwise theories for composite laminates and structures: Development, numerical implementation and application, Compos. Struct., vol. 216, pp. 240–259, 2019. DOI: 10.1016/j.compstruct.2019.02.074.
  • M. Cho, and R. R. Parmerter, An efficient higher order plate theory for laminated composites, Compos. Struct., vol. 20, no. 2, pp. 113–123, 1992. DOI: 10.1016/0263-8223(92)90067-M.
  • M. Cho, and R. R. Parmerter, Efficient higher-order plate theory for general lamination configuration, AIAA J., vol. 31, no. 7, pp. 1299–1306, 1993. DOI: 10.2514/3.11767.
  • W. Zhen, and C. Wanji, Refined global–local higher-order theory and finite element for laminated plates, Int. J. Numer. Methods Eng., vol. 69, no. 8, pp. 1627–1670, 2007. DOI: 10.1002/nme.1820.
  • A. Tessler, M. DiSciuva, and M. Gherlone, Refined zigzag theory for homogeneous, laminated composite, and sandwich plates: a homogeneous limit methodology for zigzag function selection, NASA Technical Report, 2010.
  • J. S. Kim, and M. Cho, Enhanced modeling of laminated and sandwich plates via strain energy transformation, Compos. Sci. Technol., vol. 66, no. 11–12, pp. 1575–1587, 2006. DOI: 10.1016/j.compscitech.2005.11.018.
  • J. S. Kim, and M. Cho, Enhanced first-order theory based on mixed formulation and transverse normal effect, Int. J. Solids. Struct., vol. 44, no. 3–4, pp. 1256–1276, 2007. DOI: 10.1016/j.ijsolstr.2006.06.018.
  • J. S. Kim, Free vibration of laminated and sandwich plates using enhanced plate theories, J. Sound. Vib., vol. 308, no. 1-2, pp. 268–286, 2007. DOI: 10.1016/j.jsv.2007.07.040.
  • R. Xiaohui, C. Wanji, and W. Zhen, A C0-type zig-zag theory and finite element for laminated composite and sandwich plates with general configurations, Arch. Appl. Mech., vol. 82, no. 3, pp. 391–406, 2012. DOI: 10.1007/s00419-011-0563-7.
  • E. Carrera, Developments, ideas, and evaluations based upon Reissner’s Mixed Variational Theorem in the modeling of multilayered plates and shells, Appl. Mech. Rev., vol. 54, no. 4, pp. 301–329, 2001. DOI: 10.1115/1.1385512.
  • A. G. Miguel, E. Carrera, A. Pagani, and E. Zappino, Accurate evaluation of interlaminar stresses in composite laminates via mixed one-dimensional formulation, AIAA J., vol. 56, no. 11, pp. 4582–4594, 2018. = DOI: 10.2514/1.J057189.
  • B. Wu, A. Pagani, W. Q. Chen, and E. Carrera, Geometrically nonlinear refined shell theories by Carrera Unified Formulation, Mech, Adv. Mater. Struct., vol. 28, no. 16, pp. 1721–1741, 2021. DOI: 10.1080/15376494.2019.1702237.
  • F. W. Crossman, R. E. Mauri, and W. J. Warren, Moisture-altered viscoelastic response of graphite/epoxy composites, Adv. Compos. Mater. Environ. Effects., vol. 658, pp. 205–220, 1978.
  • D. L. Flaggs, and F. W. Crossman, Analysis of the viscoelastic response of composite laminates during hygrothermal exposure, J. Compos. Mater., vol. 15, no. 1, pp. 21–40, 1981. DOI: 10.1177/002199838101500103.
  • K. Y. Lin, and I. H. Hwang, Thermo-viscoelastic analysis of composite-materials, J. Compos. Mater., vol. 23, no. 6, pp. 554–569, 1989. DOI: 10.1177/002199838902300602.
  • K. D. Jonnalagadda, T. R. Tauchert, and G. E. Blandford, Higher order thermoelastic composite plate theories, analytical comparison, J. Therm. Stresses., vol. 16, no. 3, pp. 265–284, 1993. DOI: 10.1080/01495739308946230.
  • T. Kant, and R. K. Khare, Finite element thermal stress analysis of composite laminates using a higher order theory, J. Therm. Stresses., vol. 17, no. 2, pp. 229–255, 1994. DOI: 10.1080/01495739408946257.
  • K. Rohwer, R. Rolfs, and H. Sparr, Higher-order theories for thermal stresses in layered plates, Int. J. Solids. Struct., vol. 38, no. 21, pp. 3673–3687, 2001. DOI: 10.1016/S0020-7683(00)00249-3.
  • A. M. Zenkour, Analytical solution for bending of cross-ply laminated plates under thermo-mechanical loading, Compos. Struct., vol. 65, no. 3–4, pp. 367–379, 2004. DOI: 10.1016/j.compstruct.2003.11.012.
  • H. A. Matsunaga, Comparison between 2-D single-layer and 3-D layerwise theories for computing interlaminar stresses of laminated composite and sandwich plates subjected to thermal loadings, Compos. Struct., vol. 64, no. 2, pp. 161–177, 2004. DOI: 10.1016/j.compstruct.2003.08.001.
  • B. P. Patel, A. V. Lele, M. Ganapathi, S. S. Gupta, and C. T. Sambandam, Thermo-flexural analysis of thick laminates of bimodulus composite materials, Compos. Struct., vol. 63, no. 1, pp. 11–20, 2004. DOI: 10.1016/S0263-8223(03)00120-X.
  • R. K. Khare, T. Kant, and A. K. Garg, Closed-form thermo-mechanical solutions of higher-order theories of cross-ply laminated shallow shells, Compos. Struct., vol. 59, no. 3, pp. 313–340, 2003. DOI: 10.1016/S0263-8223(02)00245-3.
  • A. K. Noor, and M. Malik, An assessment of five modeling approaches for thermo- mechanical stress analysis of laminated composite panels, Comput. Mech., vol. 25, no. 1, pp. 43–58, 2000. DOI: 10.1007/s004660050014.
  • A. M. Zenkour, Thermal bending of layered composite plates resting on elastic foundations using four-unknown shear and normal deformations theory, Compos. Struct., vol. 122, pp. 260–270, 2015. DOI: 10.1016/j.compstruct.2014.11.064.
  • S. H. Lo, W. Zhen, and K. Y. Sze, An enhanced Reddy's theory for composite plates subjected to temperature load, Mech. Adv. Mater. Struct., vol. 20, no. 10, pp. 834–841, 2013. DOI: 10.1080/15376494.2012.676718.
  • M. Cho, and J. Oh, Higher-order zig–zag plate theory under thermo-electric– mechanical loads combined, Compos. Part. B. Eng., vol. 34, no. 1, pp. 67–82, 2003. DOI: 10.1016/S1359-8368(02)00071-9.
  • M. Cho, and J. Oh, Higher Order Zig-Zag Theory for fully coupled thermos-electric-mechanical smart composite plates, Int. J. Solids. Struct., vol. 41, no. 5–6, pp. 1331–1356, 2004. DOI: 10.1016/j.ijsolstr.2003.10.020.
  • J. Oh, and M. Cho, A finite element based on cubic zig–zag plate theory for the prediction of thermo-electric–mechanical behaviors, Int. J. Solids. Struct., vol. 41, no. 5–6, pp. 1357–1375, 2004. DOI: 10.1016/j.ijsolstr.2003.10.019.
  • J. Oh, and M. Cho, Higher-order zig–zag theory for smart composite shells under mechanical–thermo-electric loading, Int. J. Solids. Struct., vol. 44, no. 1, pp. 100–127, 2007. DOI: 10.1016/j.ijsolstr.2006.04.017.
  • S. Kapuria, and G. G. S. Achary, An efficient higher order zigzag theory for laminated plates subjected to thermal loading, Int. J. Solids. Struct., vol. 41, no. 16-17, pp. 4661–4684, 2004. DOI: 10.1016/j.ijsolstr.2004.02.020.
  • E. Carrera, An assessment of mixed and classical theories for the thermal stress analysis of orthotropic multilayered plates, J. Therm. Stresses., vol. 23, no. 9, pp. 797–831, 2000. DOI: 10.1080/014957300750040096.
  • E. Carrera, and A. Ciuffreda, Closed-form solutions to assess multilayered-plate theories for various thermal stress problems, J. Therm. Stresses., vol. 27, no. 11, pp. 1001–1031, 2004. DOI: 10.1080/01495730490498584.
  • W. Zhen, and C. Wanji, A quadrilateral element based on refined global–local higher-order theory for coupling bending and extension thermo-elastic multilayered plates, Int. J. Solids. Struct., vol. 44, no. 10, pp. 3187–3217, 2007. DOI: 10.1016/j.ijsolstr.2006.09.015.
  • W. Zhen, Y. K. Cheung, S. H. Lo, and C. Wanji, On the thermal expansion effects in the transverse direction of laminated composite plates by means of a global-local higher-order model, Int. J. Mech. Sci., vol. 52, no. 7, pp. 970–981, 2010. DOI: 10.1016/j.ijmecsci.2010.03.013.
  • J. Oh, M. Cho, and J. S. Kim, Enhanced lower order shear deformation theory for fully coupled Electro-thermo-mechanical smart laminated plates, Smart Mater. Struct., vol. 16, no. 6, pp. 2229–2241, 2007. DOI: 10.1088/0964-1726/16/6/026.
  • J. W. Han, J. S. Kim, and M. Cho, New enhanced first-order shear deformation theory for thermo-mechanical analysis of laminated composite and sandwich plates, Compos. Part. B. Eng., vol. 116, pp. 422–450, 2017. DOI: 10.1016/j.compositesb.2016.10.087.
  • J. W. Han, J. S. Kim, and M. Cho, Improved thermo-mechanical stress prediction of laminated composite and sandwich plates using enhanced LCW theory, Eur. J. Mech. A/Solids., vol. 66, pp. 143–157, 2017. DOI: 10.1016/j.euromechsol.2017.07.001.
  • J. W. Han, J. S. Kim, and M. Cho, Generalization of the C0-type zigzag theory for accurate thermomechanical analysis of laminated composites, Compos. Part. B. Eng., vol. 122, pp. 173–191, 2017. DOI: 10.1016/j.compositesb.2017.03.037.
  • I. A. Ramos, A. M. Mantari, and A. M. Zenkour, Laminated composite plates subject to thermal load using trigonometrical theory based on Carrera Unified Formulation, Compos. Struct., vol. 143, pp. 324–335, 2016. DOI: 10.1016/j.compstruct.2016.02.020.
  • E. Carrera, M. Cinefra, and F. A. Fazzolari, Some results on thermal stress of layered plates and shells by using unified formulation, J. Therm. Stresses., vol. 36, no. 6, pp. 589–625, 2013. DOI: 10.1080/01495739.2013.784122.
  • F. A. Fazzolari, and E. Carrera, Thermo-mechanical buckling analysis of anisotropic multilayered composite and sandwich plates by using refined variable-kinematics theories, J. Therm. Stresses., vol. 36, no. 4, pp. 321–350, 2013. DOI: 10.1080/01495739.2013.770642.
  • M. Cinefra, M. Petrolo, G. Li, and E. Carrera, Variable kinematic shell elements for composite laminates accounting for hygrothermal effects, J. Therm. Stresses., vol. 40, no. 12, pp. 1523–1544, 2017. DOI: 10.1080/01495739.2017.1360165.
  • M. Cinefra, M. Petrolo, G. Li, and E. Carrera, Hygrothermal analysis of multilayered composite plates by variable kinematic finite elements, J. Therm. Stresses., vol. 40, no. 12, pp. 1502–1522, 2017. DOI: 10.1080/01495739.2017.1360164.
  • R. D. Bradshaw, and L. C. Brinson, Mechanical response of linear viscoelastic composite laminates incorporating non-isothermal physical aging effects, Compos. Sci. Technol., vol. 59, no. 9, pp. 1411–1127, 1999. DOI: 10.1016/S0266-3538(98)00179-1.
  • J. Li, and G. J. Weng, Effect of a viscoelastic interphase on the creep and stress/strain behavior of fiber-reinforced polymer matrix composites, Compos. Part. B. Eng., vol. 27, no. 6, pp. 589–598, 1996. DOI: 10.1016/1359-8368(95)00040-2.
  • K. Y. Lin, and S. Yi, Analysis of interlaminar stresses in viscoelastic composites, Int. J. Solids. Struct., vol. 27, no. 7, pp. 929–945, 1991. DOI: 10.1016/0020-7683(91)90025-B.
  • V. Vallala, A. Ruimi, and J. N. Reddy, Nonlinear viscoelastic analysis of orthotropic beams using a general third-order theory, Compos. Struct., vol. 94, no. 12, pp. 3759–3768, 2012. DOI: 10.1016/j.compstruct.2012.05.037.
  • S. Yi, and H. H. Hilton, Hygrothermal effects on viscoelastic responses of laminated composites, Compos. Eng., vol. 5, no. 2, pp. 183–193, 1995. DOI: 10.1016/0961-9526(95)90712-K.
  • A. R. Zak, Structural analysis of realistic solid-propellant materials, J. Spacecr. Rockets., vol. 5, no. 3, pp. 270–275, 1968. DOI: 10.2514/3.29237.
  • V. C. Haciyev, A. H. Sofiyev, and N. Kuruoglu, On the free vibration of orthotropic and inhomogeneous with spatial coordinates plates resting on the inhomogeneous viscoelastic foundation, Mech. Adv. Mater. Struct., vol. 26, no. 10, pp. 886–897, 2019. DOI: 10.1080/15376494.2018.1430271.
  • M. Avey, N. Fantuzzi, A. H. Sofiyev, and N. Kuruoglu, Nonlinear vibration of multilayer shell-type structural elements with double curvature consisting of CNT patterned layers within different theories, Compos. Struct., vol. 275, pp. 114401, 2021. DOI: 10.1016/j.compstruct.2021.114401.
  • A. H. Sofiyev, On the solution of the dynamic stability of heterogeneous orthotropic visco-elastic cylindrical shell, Compos. Struct., vol. 206, pp. 124–130, 2018. DOI: 10.1016/j.compstruct.2018.08.027.
  • A. H. Sofiyev, About an approach to the determination of the critical time of viscoelastic functionally graded cylindrical shells, Compos. Part. B. Eng., vol. 156, pp. 156–165, 2019. DOI: 10.1016/j.compositesb.2018.08.073.
  • A. Sofiyev, Z. Zerin, and N. Kuruoglu, Dynamic behavior of FGM viscoelastic plates resting on elastic foundations, Acta Mech., vol. 231, no. 1, pp. 1–17, 2020. DOI: 10.1007/s00707-019-02502-y.
  • N. K. Chandiramani, L. Librescu, and J. Aboudi, The theory of orthotropic viscoelastic shear deformable composite flat panels and their dynamic stability, Int. J. Solids. Struct., vol. 25, no. 5, pp. 465–482, 1989. DOI: 10.1016/0020-7683(89)90060-7.
  • T. M. Chen, The hybrid Laplace transform finite-element method applied to the quasi-static and dynamic analysis of viscoelastic Timoshenko beams, Int. J. Numer. Methods Eng., vol. 38, no. 3, pp. 509–522, 1995. DOI: 10.1002/nme.1620380310.
  • H. H. Hilton, and S. Yi, Anisotropic Viscoelastic finite-element analysis of mechanically and hygrothermally loaded composites, Compos. Eng., vol. 3, no. 2, pp. 123–135, 1993. DOI: 10.1016/0961-9526(93)90037-K.
  • S. N. Nguyen, J. Lee, and M. Cho, Application of the Laplace transformation for the analysis of viscoelastic composite laminates based on equivalent single-layer theories, Int. J. Aeronaut. Space Sci., vol. 13, no. 4, pp. 458–467, 2012. DOI: 10.5139/IJASS.2012.13.4.458.
  • S. N. Nguyen, J. Lee, and M. Cho, Efficient higher-order zig-zag theory for viscoelastic laminated composite plates, Int. J. Solids. Struct., vol. 62, pp. 174–185, 2015. DOI: 10.1016/j.ijsolstr.2015.02.027.
  • S. N. Nguyen, J. Lee, and M. Cho, A triangular finite element using Laplace transform for viscoelastic laminated composite plates based on efficient higher-order zigzag theory, Compos. Struct., vol. 155, pp. 223–244, 2016. DOI: 10.1016/j.compstruct.2016.07.051.
  • S. N. Nguyen, J. Lee, J. W. Han, and M. Cho, A coupled hygrothermo-mechanical viscoelastic analysis of multilayered composite plates for long-term creep behaviors, Compos. Struct., vol. 242, pp. 112030, 2020. DOI: 10.1016/j.compstruct.2020.112030.
  • J. W. Han, J. S. Kim, S. N. Nguyen, and M. Cho, Improved viscoelastic analysis of laminated composite and sandwich plates with an enhanced first-order shear deformation theory, J. Appl. Mech. – Trans. ASME., vol. 83, no. 3, pp. 031004, 2016.
  • J. W. Han, J. S. Kim, and M. Cho, Improved finite element viscoelastic analysis of laminated structures via the enhanced first-order shear deformation theory, Compos. Struct., vol. 180, pp. 360–377, 2017. DOI: 10.1016/j.compstruct.2017.07.099.
  • N. J. Pagano, Exact solutions for composite Laminates in cylindrical bending, J. Compos. Mater., vol. 3, no. 3, pp. 398–411, 1969. DOI: 10.1177/002199836900300304.
  • N. J. Pagang, and S. J. Hatfield, Elastic behavior of multilayered bidirectional composites, Aiaa J., vol. 10, no. 7, pp. 931–933, 1972. DOI: 10.2514/3.50249.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.