420
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

A comprehensive analysis of damage behaviors of composite sandwich structures under localized impact

ORCID Icon, , , &
Pages 3231-3244 | Received 13 Jan 2022, Accepted 24 Apr 2022, Published online: 04 May 2022

References

  • G. Lu and T. Yu, Energy Absorption of Structures and Materials, Woodhead Publishing, Cambridge, UK, 2003.
  • J. Galos, Thin-ply composite laminates: A review, Compos. Struct., vol. 236, no. 3, pp. 111920, 2020. DOI: 10.1016/j.compstruct.2020.111920.
  • X. Zhang, Y. Chen, and J. Hu, Recent advances in the development of aerospace materials, Prog. Aerosp. Sci., vol. 97, pp. 22–34, 2018. DOI: 10.1016/j.paerosci.2018.01.001.
  • J.R. Vinson, Sandwich structures, Appl. Mech. Rev., vol. 54, no. 3, pp. 201–214, 2001. DOI: 10.1115/1.3097295.
  • A.M. Rajendran, Advanced Numerical Simulation of Failure in Solids under Blast and Ballistic Loading: A Review, Springer US, Boston, 2009.
  • M.C.Y. Niu, Composite Airframe Structures: Practical Design Information and Data, Aviation Industry Press, Beijing, 2010.
  • L. Yan, B. Yu, B. Han, Q. Zhang, T. Lu, and B. Lu, Effects of aluminum foam filling on the low-velocity impact response of sandwich panels with corrugated cores, J. Sandw. Struct. Mater., vol. 22, no. 4, pp. 929–947, 2020. DOI: 10.1177/1099636218776585.
  • M.P. Arunkumar, J. Pitchaimani, K.V. Gangadharan, and M.C.L. Babu, Influence of nature of core on vibro acoustic behavior of sandwich aerospace structures, Aerosp. Sci. Technol., vol. 56, pp. 155–167, 2016. DOI: 10.1016/j.ast.2016.07.009.
  • Y. Frostig, M. Baruch, O. Vilnay, and I. Sheinman, High-order theory for sandwich-beam behavior with transversely flexible core, J. Eng. Mech., vol. 118, no. 5, pp. 1026–1043, 1992. DOI: 10.1061/(ASCE)0733-9399(1992)118:5(1026).
  • G. Zhou and M.D. Hill, Impact damage and energy-absorbing characteristics and residual in-plane compressive strength of honeycomb sandwich panels, J. Sandw. Struct. Mater., vol. 11, no. 4, pp. 329–356, 2009. DOI: 10.1177/1099636209105704.
  • L. Uğur, H. Duzcukoglu, O.S. Sahin, and H. Akkuş, Investigation of impact force on aluminium honeycomb structures by finite element analysis, J. Sandw. Struct. Mater., vol. 22, no. 1, pp. 87–103, 2020. DOI: 10.1177/1099636217733235.
  • D.L. Edelen and H.A. Bruck, Predicting failure modes of 3d-printed multi-material polymer sandwich structures from process parameters, J. Sandw. Struct. Mater. vol. 24, no. 2, pp. 1049–75, 2021. DOI: 10.1177/10996362211020445
  • I. Ivañez, S. Sánchez-Saez, S.K. Garcia-Castillo, E. Barbero, A. Amaro, and P.N.B. Reis, High-velocity impact behaviour of damaged sandwich plates with agglomerated cork core, Compos. Struct., vol. 248, pp. 112520, 2020. DOI: 10.1016/j.compstruct.2020.112520.
  • I. Ivañez, S. Sánchez-Saez, S.K. Garcia-Castillo, E. Barbero, A.M. Amaro, and P.N.B. Reis, Impact response of repaired sandwich structures, Polym. Compos., vol. 41, no. 8, pp. 3014–3022, 2020. DOI: 10.1002/pc.25593.
  • M.O.W. Richardson and M.J. Wisheart, Review of low-velocity impact properties of composite materials, Compos. A: Appl. Sci. Manuf., vol. 27, no. 12, pp. 1123–1131, 1996. DOI: 10.1016/1359-835X(96)00074-7.
  • S. Safri, M. Sultan, N. Yidris, and F. Mustapha, Low velocity and high velocity impact test on composite materials - A review, International Journal of Engineering and Sciences, vol. 3, pp. 50–60, 2014. DOI: 10.1016/B978-0-08-102131-6.00014-1. 2014.
  • M. Chandrasekar, M.R. Ishak, M. Jawaid, S.M. Sapuan, and Z. Leman, Low velocity impact properties of natural fiber-reinforced composite materials for aeronautical applications. In: M. Jawaid and M. Thariq (eds.), Sustainable Composites for Aerospace Applications, pp. 293–313, Woodhead Publishing, Cambridge, UK, 2018.
  • Y. Chen, S. Hou, K. Fu, X. Han, and L. Ye, Low-velocity impact response of composite sandwich structures: Modelling and experiment, Compos. Struct., vol. 168, pp. 322–334, 2017. DOI: 10.1016/j.compstruct.2017.02.064.
  • V.S. Sokolinsky, K.C. Indermuehle, and J.A. Hurtado, Numerical simulation of the crushing process of a corrugated composite plate, Compos. A, vol. 42, no. 9, pp. 1119–1126, 2011. DOI: 10.1016/j.compositesa.2011.04.017.
  • D. Zhang, Q. Fei, and P. Zhang, Drop-weight impact behavior of honeycomb sandwich panels under a spherical impactor, Compos. Struct., vol. 168, no. May, pp. 633–645, 2017. DOI: 10.1016/j.compstruct.2017.02.053.
  • M. Schwab, M. Todt, M. Wolfahrt, and H.E. Pettermann, Failure mechanism based modelling of impact on fabric reinforced composite laminates based on shell elements, Compos. Sci. Technol., vol. 128, pp. 131–137, 2016. DOI: 10.1016/j.compscitech.2016.03.025.
  • J. Deng, Z. Hong, Q. Yin, and T.J. Lu, A physically-based failure analysis framework for fiber-reinforced composite laminates under multiaxial loading, Compos. Struct., vol. 241, pp. 112125, 2020. DOI: 10.1016/j.compstruct.2020.112125.
  • Y. Chen, L. Ye, and K. Fu, Progressive failure of CFRP tubes reinforced with composite sandwich panels: Numerical analysis and energy absorption, Compos. Struct., vol. 263, pp. 113674, 2021. DOI: 10.1016/j.compstruct.2021.113674.
  • B. Yang, K. Fu, and Y. Li, Modelling damage evolution and cai strength of composite laminates under biaxial compression, J. Compos. Mater., vol. 55, no. 21, pp. 2887–2898, 2021. DOI: 10.1177/0021998321998426.
  • B. Yang, H. Wang, Y. Chen, K. Fu, and Y. Li, Experimental evaluation and modelling of drilling responses in CFRP/honeycomb composite sandwich panels, Thin Wall. Struct., vol. 169, pp. 108279, 2021. DOI: 10.1016/j.tws.2021.108279.
  • P.P. Camanho, C.G. Davila, and M.D. Moura, Numerical simulation of mixed-mode progressive delamination in composite materials, J. Compos. Mater., vol. 37, no. 16, pp. 1415–1438, 2003. DOI: 10.1177/0021998303034505.
  • N. Hu, Y. Zemba, T. Okabe, C. Yan, H. Fukunaga, and A.M. Elmarakbi, A new cohesive model for simulating delamination propagation in composite laminates under transverse loads, Mech. Mater., vol. 40, no. 11, pp. 920–935, 2008. DOI: 10.1016/j.mechmat.2008.05.003.
  • P.F. Liu and M.M. Islam, A nonlinear cohesive model for mixed-mode delamination of composite laminates, Compos. Struct., vol. 106, no. Dec, pp. 47–56, 2013. DOI: 10.1016/j.compstruct.2013.05.049.
  • L. Oliveira and M.V. Donadon, Delamination analysis using cohesive zone model: A discussion on traction-separation law and mixed-mode criteria, Eng. Fract. Mech., vol. 228, pp. 106922, 2020. DOI: 10.1016/j.engfracmech.2020.106922.
  • V. Saseendran, C. Berggreen, and L.A. Carlsson, Fracture mechanics analysis of reinforced dcb sandwich debond specimen loaded by moments, AIAA J., vol. 56, no. 1, pp. 413–422, 2018. DOI: 10.2514/1.J056039.
  • M. Giglio, A. Manes, and A. Gilioli, Investigations on sandwich core properties through an experimental–numerical approach, Compos. B, vol. 43, no. 2, pp. 361–374, 2012. DOI: 10.1016/j.compositesb.2011.08.016.
  • L. Liu, H. Wang, and Z. Guan, Experimental and numerical study on the mechanical response of Nomex honeycomb core under transverse loading, Compos. Struct., vol. 121, pp. 304–314, 2015. DOI: 10.1016/j.compstruct.2014.11.034.
  • M.S. Hoo Fatt and K.S. Park, Dynamic models for low-velocity impact damage of composite sandwich panels – Part A: Deformation, Compos. Struct., vol. 52, no. 34, pp. 335–351, 2001. DOI: 10.1016/S0263-8223(01)00026-5.
  • C. Audibert, A.-S. Andréani, É. Lainé, and J.-C. Grandidier, Discrete modelling of low-velocity impact on Nomex® honeycomb sandwich structures with CFRP skins, Compos. Struct., vol. 207, pp. 108–118, 2019. DOI: 10.1016/j.compstruct.2018.09.047.
  • Z. Huang, S. Yi, H. Chen, and X. He, Parameter analysis of damaged region for laminates with matrix defects, J. Sandw. Struct. Mater., vol. 23, no. 2, pp. 580–620, 2021. DOI: 10.1177/1099636219842290.
  • F. Zhu, G. Lu, D. Ruan, and Z. Wang, Plastic deformation, failure and energy absorption of sandwich structures with metallic cellular cores, Int. J. Prot. Struct., vol. 1, no. 4, pp. 507–541, 2010. DOI: 10.1260/2041-4196.1.4.507.
  • Z. Wang, H. Tian, Z. Lu, and Z. Wei, High-speed axial impact of aluminum honeycomb – experiments and simulations, Compos. B: Eng., vol. 56, no. 1, pp. 1–8, 2014. DOI: 10.1016/j.compositesb.2013.07.013.
  • W. He, L. Yao, X. Meng, G. Sun, D. Xie, and J. Liu, Effect of structural parameters on low-velocity impact behavior of aluminum honeycomb sandwich structures with CFRP face sheets, Thin-Wall. Struct., vol. 137, pp. 411–432, 2019. DOI: 10.1016/j.tws.2019.01.022.
  • S. Cheng, Research on Dynamic Failure Mechanism of Composite Sandwich Structures, South China University of Technology, Guangzhou, China, 2016.
  • Y. Chen, K. Fu, S. Hou, X. Han, and L. Ye, Multi-objective optimization for designing a composite sandwich structure under normal and 45° impact loadings, Compos. B., vol. 142, pp. 159–170, 2018. DOI: 10.1016/j.compositesb.2018.01.020.
  • G.L. Farley, Energy absorption of composite materials, J. Compos. Mater., vol. 17, no. 3, pp. 267–279, 1983. DOI: 10.1177/002199838301700307.
  • J.M. Ferreira and A. Chattopadhyay, An optimization procedure for maximizing the energy absorption capability of composite shells, Math. Comput. Modell., vol. 19, no. 2, pp. 61–77, 1994. DOI: 10.1016/0895-7177(94)90050-7.
  • S.-S. Shi, Z. Sun, X.-Z. Hu, and H.-R. Chen, Carbon-fiber and aluminum-honeycomb sandwich composites with and without Kevlar-fiber interfacial toughening, Compos. A: Appl. Sci. Manuf., vol. 67, pp. 102–110, 2014. DOI: 10.1016/j.compositesa.2014.08.017.
  • Z. Sun, X. Hu, S. Sun, and H. Chen, Energy-absorption enhancement in carbon-fiber aluminum-foam sandwich structures from short aramid-fiber interfacial reinforcement, Compos. Sci. Technol., vol. 77, pp. 14–21, 2013. DOI: 10.1016/j.compscitech.2013.01.016.
  • Abaqus Analysis User’s Manual, Version 2019, Dassault Systèmes Simulia Corp, Rhode Island, USA, 2019.
  • C.C. Foo, G.B. Chai, and L.K. Seah, A model to predict low-velocity impact response and damage in sandwich composites, Compos. Sci. Technol., vol. 68, no. 6, pp. 1348–1356, 2008. DOI: 10.1016/j.compscitech.2007.12.007.
  • S. Zhu and G.B. Chai, Damage and failure mode maps of composite sandwich panel subjected to quasi-static indentation and low velocity impact, Compos. Struct., vol. 101, no. Jul, pp. 204–214, 2013. DOI: 10.1016/j.compstruct.2013.02.010.
  • T. Anderson and E. Madenci, Experimental investigation of low-velocity impact characteristics of sandwich composites, Compos. Struct., vol. 50, no. 3, pp. 239–247, 2000. DOI: 10.1016/S0263-8223(00)00098-2.
  • X. Zhang, F. Xu, Y. Zang, and W. Feng, Experimental and numerical investigation on damage behavior of honeycomb sandwich panel subjected to low-velocity impact, Compos. Struct., vol. 236, pp. 111882, 2020. DOI: 10.1016/j.compstruct.2020.111882.
  • A.F. Johnson and J. Simon, Modeling fabric reinforced composites under impact loads. In: EUROMECH 400: Impact and Damage Tolerance of Composite Materials and Structures, Imperial College of Science Technology & Medicine, London, 1999.
  • S. Heimbs, S. Schmeer, P. Middendorf, and M. Maier, Strain rate effects in phenolic composites and phenolic-impregnated honeycomb structures, Compos. Sci. Technol., vol. 67, no. 13, pp. 2827–2837, 2007. DOI: 10.1016/j.compscitech.2007.01.027.
  • I.M. Daniel, B.T. Werner, and J.S. Fenner, Strain-rate-dependent failure criteria for composites, Compos. Sci. Technol., vol. 71, no. 3, pp. 357–364, 2011. DOI: 10.1016/j.compscitech.2010.11.028.
  • J.P. Hou and C. Ruiz, Measurement of the properties of woven cfrp t300/914 at different strain rates, Compos. Sci. Technol., vol. 60, no. 15, pp. 2829–2834, 2000. DOI: 10.1016/S0266-3538(00)00151-2.
  • S. Mustapha, L. Ye, D. Wang, and Y. Lu, Assessment of debonding in sandwich cf/ep composite beams using a 0 lamb wave at low frequency, Compos. Struct., vol. 93, no. 2, pp. 483–491, 2011. DOI: 10.1016/j.compstruct.2010.08.032.
  • A. Faggiani and B.G. Falzon, Predicting low-velocity impact damage on a stiffened composite panel, Compos. A Appl. Sci. Manuf., vol. 41, no. 6, pp. 737–749, 2010. DOI: 10.1016/j.compositesa.2010.02.005.
  • R. Campilho, M. Moura, A. Pinto, J. Morais, and J. Domingues, Modelling the tensile fracture behaviour of CFRP scarf repairs, Compos. B Eng., vol. 40, no. 2, pp. 149–157, 2009. DOI: 10.1016/j.compositesb.2008.10.008.
  • G.M.K. Pearce, A.F. Johnson, A.K. Hellier, and R.S. Thomson, A stacked-shell finite element approach for modelling a dynamically loaded composite bolted joint under in-plane bearing loads, Appl. Compos. Mater., vol. 20, no. 6, pp. 1025–1039, 2013. DOI: 10.1007/s10443-013-9316-9.
  • I. Shahid and F.K. Chang, Accumulative damage model for tensile and shear failures of laminated composite plates, J. Compos. Mater., vol. 29, no. 7, pp. 926–981, 1995. DOI: 10.1177/002199839502900705.
  • L. Liu, P. Meng, H. Wang, and Z. Guan, The flatwise compressive properties of Nomex honeycomb core with debonding imperfections in the double cell wall, Compos. B, vol. 76, pp. 122–132, 2015. DOI: 10.1016/j.compositesb.2015.02.017.
  • R. Roy, S.-J. Park, J.-H. Kweon, and J.-H. Choi, Characterization of Nomex honeycomb core constituent material mechanical properties, Compos. Struct., vol. 117, pp. 255–266, 2014. DOI: 10.1016/j.compstruct.2014.06.033.
  • F. Wei, Assessment and Analysis of Repair to Composite Honeycomb Sandwich Structure, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2019.
  • M.L. Benzeggagh and M. Kenane, Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus, Compos. Sci. Technol., vol. 56, no. 4, pp. 439–449, 1996. DOI: 10.1016/0266-3538(96)00005-X.
  • J.M.P.B.C. Castro, M. Fontana, A.L. Araujo, and J.F.A. Madeira, Optimization of a composite impact attenuator for a formula student car, Mech. Adv. Mater. Struct., vol. 28, no. 18, pp. 1858–1868, 2021. DOI: 10.1080/15376494.2020.1712627.
  • M.R. Nurul Fazita, H.P.S. Abdul Khalil, A. Nor Amira Izzati, and S. Rizal, Effects of strain rate on failure mechanisms and energy absorption in polymer composites, In: M. Jawaid, M. Thariq, and N. Saba (eds.), Failure Analysis in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, pp. 51–78, Woodhead Publishing, Duxford, UK, 2019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.