258
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Size-dependent vibration of laminated functionally graded curved beams covered with piezoelectric layers

, , , &
Pages 3257-3266 | Received 09 Feb 2022, Accepted 27 Apr 2022, Published online: 09 May 2022

References

  • S. S. Atteshamuddin and M. G. Yuwaraj, A sinusoidal beam theory for functionally graded sandwich curved beams, Compos. Struct., vol. 226, pp. 111246, 2019.
  • M. S. Beg and M. Y. Yasin, Bending, free and forced vibration of functionally graded deep curved beams in thermal environment using an efficient layerwise theory, Mech. Mater., vol. 159, pp. 103919, 2021. DOI: 10.1016/j.mechmat.2021.103919.
  • J. T. Oden and E. A. Ripperger, Mechanics of Elastic Structures (2nd ed.). McGraweHill, New York, 1981.
  • S. P. Timoshenko, On the correction for shear of the differential equation for transverse vibrations of prismatic bars, Philos. Mag., vol. 41, no. 245, pp. 744–746, 1921. DOI: 10.1080/14786442108636264.
  • C. W. Lim, C. M. Wang, and S. Kitipornchai, Timoshenko curved beam bending solutions in terms of Euler–Bernoulli solutions, Arch. Appl. Mech., vol. 67, no. 3, pp. 179–190, 1997. DOI: 10.1007/s004190050110.
  • A. Yousefi and A. Rastgoo, Free vibration of functionally graded spatial curved beams, Compos. Struct., vol. 93, no. 11, pp. 3048–3056, 2011. DOI: 10.1016/j.compstruct.2011.04.024.
  • A. Lyckegaard and O. T. Thomsen, Nonlinear analysis of a curved sandwich beam joined with a straight sandwich beam, Compos. Part B: Eng., vol. 37, nos. 2–3, pp. 101–107, 2005. DOI: 10.1016/j.compositesb.2005.08.001.
  • H. T. Thai and T. P. Vo, Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories, Int. J. Mech. Sci., vol. 62, no. 1, pp. 57–66, 2012. DOI: 10.1016/j.ijmecsci.2012.05.014.
  • W. Yu, D. H. Hodges, V. Volovoi, and C. Cesnik, On Timoshenko-like modeling of initially curved and twisted composite beams, Int. J. Solid Struct., vol. 39, no. 19, pp. 5101–5121, 2002. DOI: 10.1016/S0020-7683(02)00399-2.
  • A. K. Noor, W. H. Greene, and S. J. Hartley, Nonlinear finite element analysis of curved beams, Comput. Meth. Appl. Mech. Eng., vol. 12, no. 3, pp. 289–307, 1977. DOI: 10.1016/0045-7825(77)90018-4.
  • J. N. Reddy, and I. R. Singh, Large deflections and large-amplitude free vibrations of straight and curved beams, Int. J. Numer. Meth. Eng., vol. 17, no. 6, pp. 829–852, 1981. DOI: 10.1002/nme.1620170603.
  • C. P. Filipich and M. T. Piovan, The dynamics of thick curved beams constructed with functionally graded materials, Mech. Res. Commun., vol. 37, no. 6, pp. 565–550, 2010. DOI: 10.1016/j.mechrescom.2010.07.007.
  • M. T. Piovan, S. Domini, and J. M. Ramirez, In-plane and out-of-plane dynamics and buckling of functionally graded circular curved beams, Compos. Struct., vol. 94, no. 11, pp. 3194–3206, 2012. DOI: 10.1016/j.compstruct.2012.04.032.
  • P. Talebizadehsardari, A. Eyvazian, M. Asmael, B. Karami, and R. B. Mahani, Static bending analysis of functionally graded polymer composite curved beams reinforced with carbon nanotubes, Thin Wall Struct., vol. 57, no. 107139, 2021.
  • O. Polit, C. Anant, B. Anirudh, and M. Ganapathi, Functionally graded graphene reinforced porous nanocomposite curved beams: bending and elastic stability using a higher-order model with thickness stretch effect, Compos. Part B: Eng., vol. 166, pp. 310–327, 2019. DOI: 10.1016/j.compositesb.2018.11.074.
  • P. V. Avhad and A. S. Sayyad, Static analysis of functionally graded composite beams curved in elevation using higher order shear and normal deformation theory, Mater. Today Proc., vol. 21, no. 2, pp. 1195–1199, 2020. DOI: 10.1016/j.matpr.2020.01.069.
  • A. S. Sayyad and Y. M. Ghugalb, A sinusoidal beam theory for functionally graded sandwich curved beams, Compos. Struct., vol. 226, no. 15, pp. 246–259, 2019.
  • Tan-Tien Nguyen, Ngoc-Linh Nguyen, Jaehong Lee, and Quoc-Hung Nguyen, Analysis of non-uniform polygonal cross-sections for thin-walled functionally graded straight and curved beams, Eng. Struct., vol. 226, no. 1, pp. 111366, 2021. DOI: 10.1016/j.engstruct.2020.111366.
  • M. Lezgy-Nazargah, P. Vidal, and O. Polit, An efficient finite element model for static and dynamic analyses of functionally graded piezoelectric beams, Compos. Struct., vol. 104, no. 5, pp. 71–84, 2013. DOI: 10.1016/j.compstruct.2013.04.010.
  • Y. S. Li, W. J. Feng, and Z. Y. Cai, Bending and free vibration of functionally graded piezoelectric beam based on modified strain gradient theory, Compos. Struct., vol. 115, no. 1, pp. 41–50, 2014. DOI: 10.1016/j.compstruct.2014.04.005.
  • S. K. Parashar and P. Sharma, Modal analysis of shear-induced flexural vibration of FGPM beam using generalized differential quadrature method, Compos. Struct., vol. 139, no. 1, pp. 222–232, 2016. DOI: 10.1016/j.compstruct.2015.12.012.
  • M. Chen, et al., The isogeometric free vibration and transient response of functionally graded piezoelectric curved beam with elastic restraints, Results Phys., vol. 11, pp. 712–725, 2018. DOI: 10.1016/j.rinp.2018.10.019.
  • J. Su, Y. Qu, K. Zhang, Q. Zhang, and Y. Tian, Vibration analysis of functionally graded porous piezoelectric deep curved beams resting on discrete elastic supports, Thin Wall Struct., vol. 164, pp. 107838, 2021. DOI: 10.1016/j.tws.2021.107838.
  • S. Z. Tabatabaei-Nejhad, P. Malekzadeh, and M. Eghtesad, Out-of-plane vibration of laminated FG-GPLRC curved beams with piezoelectric layers, Thin Wall Struct., vol. 150, pp. 106678, 2020. DOI: 10.1016/j.tws.2020.106678.
  • R. G. D. Villoria and A. Miravete, Mechanical model to evaluate the effect of the dispersion in nanocomposites, Acta Mater., vol. 55, no. 9, pp. 3025–3031, 2007. DOI: 10.1016/j.actamat.2007.01.007.
  • H. Wu, J. Yang, and S. Kitipornchai, Dynamic instability of functionally graded multilayer graphene nanocomposite beams in thermal environment, Compos. Struct., vol. 162, no. 15, pp. 244–254, 2017. DOI: 10.1016/j.compstruct.2016.12.001.
  • A. C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys., vol. 54, no. 9, pp. 4703–4710, 1983. DOI: 10.1063/1.332803.
  • C. Shu, Differential Quadrature and its Application in Engineering. Springer, London, 2000.
  • C. W. Bert and M. Malik, Differential quadrature method in computational mechanics: a review, Appl. Mech. Rev., vol. 49, no. 1, pp. 1–28, 1996. DOI: 10.1115/1.3101882.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.