232
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

The effects of surroundings and stiffeners in the CUF-based postbuckling analysis of composite panels under in-plane shear

ORCID Icon, ORCID Icon, ORCID Icon &
Pages 3267-3279 | Received 07 Apr 2022, Accepted 28 Apr 2022, Published online: 19 May 2022

References

  • M.R. Hosseini A, M.R. Forouzan, and E. Daneshkhah, Damage and residual bending strength in glass-polyester molded grating composite panels after low-velocity impact, Compos. Struct., vol. 227, pp. 111290, 2019.
  • E. Daneshkhah, R.J. Nedoushan, D. Shahgholian, and N. Sina, Cost-effective method of optimization of stacking sequences in the cylindrical composite shells using genetic algorithm, TECM., vol. 29, no. 1, pp. 115–138, 2020. DOI: 10.13052/ejcm2642-2085.2914.
  • J.N. Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press, United States of America, 2003.
  • B.N. Singh, A. Lal, and R. Kumar, Nonlinear bending response of laminated composite plates on nonlinear elastic foundation with uncertain system properties, Eng. Struct., vol. 30, no. 4, pp. 1101–1112, 2008. DOI: 10.1016/j.engstruct.2007.07.007.
  • P. Dash and B.N. Singh, Static response of geometrically nonlinear laminated composite plates having uncertain material properties, Mech. Adv. Mater. Struct., vol. 22, no. 4, pp. 269–280, 2015. DOI: 10.1080/15376494.2012.736056.
  • D. Shahgholian-Ghahfarokhi, M. Aghaei-Ruzbahani, and G. Rahimi, Vibration correlation technique for the buckling load prediction of composite sandwich plates with iso-grid cores, Thin-Walled Struct., vol. 142, pp. 392–404, 2019. DOI: 10.1016/j.tws.2019.04.027.
  • A.W. Leissa, A review of laminated composite plate buckling, Appl. Mech. Rev., vol. 40, no. 5, pp. 575–591, 1987. DOI: 10.1115/1.3149534.
  • L. Librescu and M. Stein, A geometrically nonlinear theory of transversely isotropic laminated composite plates and its use in the post-buckling analysis, Thin-Walled Struct., vol. 11, no. 12, pp. 177–201, 1991. DOI: 10.1016/0263-8231(91)90016-C.
  • E. Carrera and M. Villani, Effects of boundary conditions on postbuckling of compressed, symmetrically laminated thick plates, AIAA J., vol. 33, no. 8, pp. 1543–1546, 1995. DOI: 10.2514/3.12587.
  • M. Amabili and M.R.S. Tajahmadi, Thermal post-buckling of laminated and isotropic rectangular plates with fixed edges: Comparison of experimental and numerical results, Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci., vol. 226, no. 10, pp. 2393–2401, 2012.
  • F. Alijani and M. Amabili, Non-linear dynamic instability of functionally graded plates in thermal environments, Int. J. Non-Linear Mech., vol. 50, pp. 109–126, 2013. DOI: 10.1016/j.ijnonlinmec.2012.10.009.
  • G.J. Turvey and I.H. Marshall, Buckling and Postbuckling of Composite Plates, Springer Science & Business Media, London, United Kingdom, 2012.
  • B.S. Reddy, A.R. Reddy, J.S. Kumar, and K.V.K. Reddy, Bending analysis of laminated composite plates using finite element method, Int. J. Eng. Sci. Technol., vol. 4, no. 2, pp. 177–190, 2018. DOI: 10.4314/ijest.v4i2.14.
  • K.M. Liew, J. Wang, M.J. Tan, and S. Rajendran, Postbuckling analysis of laminated composite plates using the mesh-free kp-Ritz method, Comput. Methods Appl. Mech. Eng., vol. 195, no. 78, pp. 551–570, 2006. DOI: 10.1016/j.cma.2005.02.004.
  • H.S. Shen, Y. Xiang, F. Lin, and D. Hui, Buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates in thermal environments, Compos. B: Eng., vol. 119, pp. 67–78, 2017. DOI: 10.1016/j.compositesb.2017.03.020.
  • Y. Yu, H.S. Shen, H. Wang, and D. Hui, Postbuckling of sandwich plates with graphene-reinforced composite face sheets in thermal environments, Compos. B: Eng., vol. 135, pp. 72–83, 2018. DOI: 10.1016/j.compositesb.2017.09.045.
  • H.S. Shen and S.R. Li, Postbuckling of sandwich plates with fgm face sheets and temperature-dependent properties, Compos. B: Eng., vol. 39, no. 2, pp. 332–344, 2008. DOI: 10.1016/j.compositesb.2007.01.004.
  • Y.X. Zhang and C.H. Yang, Recent developments in finite element analysis for laminated composite plates, Compos. Struct., vol. 88, no. 1, pp. 147–157, 2009. DOI: 10.1016/j.compstruct.2008.02.014.
  • M. Amabili, Nonlinear Vibrations and Stability of Shells and Plates, Cambridge University Press, Cambridge, United Kingdom, 2008.
  • M. Amabili, Nonlinear Mechanics of Shells and Plates in Composite, Soft and Biological Materials, Cambridge University Press, Cambridge, United Kingdom, 2018.
  • I.T. Cook and K.C. Rockey, Shear buckling of rectangular plates with mixed boundary conditions, Aeronaut. Q., vol. 14, no. 4, pp. 349–356, 1963. DOI: 10.1017/S0001925900002900.
  • S.B. Biggers and S.S. Pageau, Shear buckling response of tailored composite plates, AIAA J., vol. 32, no. 5, pp. 1100–1103, 1994. DOI: 10.2514/3.12107.
  • C. Dou, Z.Q. Jiang, Y.L. Pi, and Y.L. Guo, Elastic shear buckling of sinusoidally corrugated steel plate shear wall, Eng. Struct., vol. 121, pp. 136–146, 2016. DOI: 10.1016/j.engstruct.2016.04.047.
  • Y. Kiani, Shear buckling of FG-CNT reinforced composite plates using Chebyshev-Ritz method, Compos. B: Eng., vol. 105, pp. 176–187, 2016. DOI: 10.1016/j.compositesb.2016.09.001.
  • C.H. Pham, Shear buckling of plates and thin-walled channel sections with holes, J. Constr. Steel Res., vol. 128, pp. 800–811, 2017. DOI: 10.1016/j.jcsr.2016.10.013.
  • D. Hui, Shear buckling of anti-symmetric cross ply rectangular plates, Fibre Sci. Technol., vol. 21, no. 4, pp. 327–340, 1984. DOI: 10.1016/0015-0568(84)90036-8.
  • S. Kosteletos, Shear buckling response of laminated plates, Compos. Struct., vol. 20, no. 3, pp. 147–154, 1992. DOI: 10.1016/0263-8223(92)90021-4.
  • J. Loughlan, The influence of bend–twist coupling on the shear buckling response of thin laminated composite plates, Thin-Walled Struct., vol. 34, no. 2, pp. 97–114, 1999. DOI: 10.1016/S0263-8231(99)00009-9.
  • J. Loughlan, The shear buckling behaviour of thin composite plates with particular reference to the effects of bend–twist coupling, Int. J. Mech. Sci., vol. 43, no. 3, pp. 771–792, 2001. DOI: 10.1016/S0020-7403(00)00030-8.
  • M. Shariyat and K. Asemi, Three-dimensional non-linear elasticity-based 3D cubic B-spline finite element shear buckling analysis of rectangular orthotropic FGM plates surrounded by elastic foundations, Compos. B: Eng., vol. 56, pp. 934–947, 2014. DOI: 10.1016/j.compositesb.2013.09.027.
  • W.Y. Jung and S.C. Han, Shear buckling responses of laminated composite shells using a modified 8-node ANS shell element, Compos. Struct., vol. 109, pp. 119–129, 2014. DOI: 10.1016/j.compstruct.2013.10.055.
  • Q. Chen and P. Qiao, Shear buckling of rotationally-restrained composite laminated plates, Thin-Walled Struct., vol. 94, pp. 147–154, 2015. DOI: 10.1016/j.tws.2015.04.006.
  • S.R. Atashipour and U.A. Girhammar, On the shear buckling of clamped narrow rectangular orthotropic plates, Math. Probl. Eng., vol. 2015, pp. 1–11, 2015. DOI: 10.1155/2015/569356.
  • H.S.J. Lee and C.B. York, Compression and shear buckling performance of finite length plates with bending-twisting coupling, Compos. Struct., vol. 241, pp. 112069, 2020. DOI: 10.1016/j.compstruct.2020.112069.
  • N.G.R. Iyengar and A. Chakraborty, Study of interaction curves for composite laminate subjected to in-plane uniaxial and shear loadings, Compos. Struct., vol. 64, no. 34, pp. 307–315, 2004. DOI: 10.1016/j.compstruct.2003.08.014.
  • I. Shufrin, O. Rabinovitch, and M. Eisenberger, Buckling of symmetrically laminated rectangular plates with general boundary conditions–a semi analytical approach, Compos. Struct., vol. 82, no. 4, pp. 521–531, 2008. DOI: 10.1016/j.compstruct.2007.02.003.
  • C. Bedon and C. Amadio, Buckling analysis of simply supported flat glass panels subjected to combined in-plane uniaxial compressive and edgewise shear loads, Eng. Struct., vol. 59, pp. 127–140, 2014. DOI: 10.1016/j.engstruct.2013.10.034.
  • Q. Liu, P. Qiao, and X. Guo, Buckling analysis of restrained orthotropic plates under combined in-plane shear and axial loads and its application to web local buckling, Compos. Struct., vol. 111, pp. 540–552, 2014. DOI: 10.1016/j.compstruct.2014.01.036.
  • Y. Zhang and F.L. Matthews, Initial buckling of curved panels of generally layered composite materials, Compos. Struct., vol. 1, no. 1, pp. 3–30, 1983. DOI: 10.1016/0263-8223(83)90014-4.
  • Y. Zhang and F.L. Matthews, Large deflection behavior of simply supported laminated panels under in-plane loading, J. Appl. Mech., vol. 52, no. 3, pp. 553–558, 1985. DOI: 10.1115/1.3169100.
  • J. Loughlan, The buckling performance of composite stiffened panel structures subjected to combined in-plane compression and shear loading, Compos. Struct., vol. 29, no. 2, pp. 197–212, 1994. DOI: 10.1016/0263-8223(94)90100-7.
  • H. Wang, M. Ou, and T. Wang, Post-buckling behaviour of orthotropic rectangular plates, Comput. Struct., vol. 41, no. 1, pp. 1–5, 1991. DOI: 10.1016/0045-7949(91)90151-B.
  • M.P. Nemeth, Buckling behavior of long anisotropic plates subjected to combined loads, 36th Structures, Structural Dynamics and Materials Conference, New Orleans, United States of America, p. 1455, 1995. DOI: 10.2514/6.1995-1455.
  • M.P. Nemeth, Buckling Behavior of Long Symmetrically Laminated Plates Subjected to Shear and Linearly Varying Axial Edge Loads, vol. 3659. National Aeronautics and Space Administration, Langley Research Center, United States of America, 1997.
  • C.A. Featherston, Imperfection sensitivity of curved panels under combined compression and shear, Int. J. Non-Linear Mech., vol. 38, no. 2, pp. 225–238, 2003. DOI: 10.1016/S0020-7462(01)00058-0.
  • K.D. Kim, G.R. Lomboy, and S.C. Han, A co-rotational 8-node assumed strain shell element for postbuckling analysis of laminated composite plates and shells, Comput. Mech., vol. 30, no. 4, pp. 330–342, 2003. DOI: 10.1007/s00466-003-0415-6.
  • C.A. Featherston and A. Watson, Buckling of optimised flat composite plates under shear and in-plane bending, Compos. Sci. Technol., vol. 65, no. 6, pp. 839–853, 2005. DOI: 10.1016/j.compscitech.2004.07.007.
  • S.C. Han, S.Y. Lee, and G. Rus, Postbuckling analysis of laminated composite plates subjected to the combination of in-plane shear, compression and lateral loading, Int. J. Solids Struct., vol. 43, no. 1819, pp. 5713–5735, 2006. DOI: 10.1016/j.ijsolstr.2005.08.004.
  • Q. Chen and P. Qiao, Post-buckling analysis of composite plates under combined compression and shear loading using finite strip method, Finite Elem. Anal. Des., vol. 83, pp. 33–42, 2014. DOI: 10.1016/j.finel.2014.01.002.
  • M. Petrolo, M.H. Nagaraj, I. Kaleel, and E. Carrera, A global-local approach for the elastoplastic analysis of compact and thin-walled structures via refined models, Comput. Struct., vol. 206, pp. 54–65, 2018. DOI: 10.1016/j.compstruc.2018.06.004.
  • E. Carrera, A. Pagani, R. Azzara, and R. Augello, Vibration of metallic and composite shells in geometrical nonlinear equilibrium states, Thin-Walled Struct., vol. 157, pp. 107131, 2020. DOI: 10.1016/j.tws.2020.107131.
  • A. Pagani and E. Carrera, Unified formulation of geometrically nonlinear refined beam theories, Mech. Adv. Mater. Struct., vol. 25, no. 1, pp. 15–31, 2018. DOI: 10.1080/15376494.2016.1232458.
  • M. Petrolo, M.H. Nagaraj, E. Daneshkhah, R. Augello, and E. Carrera, Static analysis of thin-walled beams accounting for nonlinearities, Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci., vol. 236, no. 6, pp. 2967–2980, 2022. DOI: 10.1177/09544062211032997.
  • A. Pagani and E. Carrera, Large-deflection and post-buckling analyses of laminated composite beams by Carrera Unified Formulation, Compos. Struct., vol. 170, pp. 40–52, 2017. DOI: 10.1016/j.compstruct.2017.03.008.
  • A. Pagani, E. Daneshkhah, X. Xu, and E. Carrera, Evaluation of geometrically nonlinear terms in the large-deflection and post-buckling analysis of isotropic rectangular plates, Int. J. Non-Linear Mech., vol. 121, pp. 103461, 2020. DOI: 10.1016/j.ijnonlinmec.2020.103461.
  • X. Xu, E. Carrera, H. Yang, E. Daneshkhah, and R. Augello, Evaluation of stiffeners effects on buckling and post-buckling of laminated panels, Aerosp. Sci. Technol., vol. 123, pp. 107431, 2022. DOI: 10.1016/j.ast.2022.107431.
  • E. Carrera, R. Azzara, E. Daneshkhah, A. Pagani, and B. Wu, Buckling and post-buckling of anisotropic flat panels subjected to axial and shear in-plane loadings accounting for classical and refined structural and nonlinear theories, Int. J. Non-Linear Mech., vol. 133, pp. 103716, 2021. DOI: 10.1016/j.ijnonlinmec.2021.103716.
  • B. Wu, A. Pagani, M. Filippi, W.Q. Chen, and E. Carrera, Accurate stress fields of post-buckled laminated composite beams accounting for various kinematics, Int. J. Non-Linear Mech., vol. 111, pp. 60–71, 2019. DOI: 10.1016/j.ijnonlinmec.2019.02.002.
  • O.O. Ochoa and J.N. Reddy, Finite element analysis of composite laminates. In: Finite Element Analysis of Composite Laminates, pp. 37–109, Springer, Dordrecht, Netherlands, 1992.
  • E. Carrera, M. Cinefra, M. Petrolo, and E. Zappino, Finite Element Analysis of Structures through Unified Formulation, Wiley, Chichester, West Sussex, UK, 2014.
  • X. Xu, N. Fallahi, and H. Yang, Efficient CUF-based FEM analysis of thin-wall structures with lagrange polynomial expansion, Mech. Adv. Mater. Struct., vol. 29, no. 9, pp. 1316–1322, 2022. DOI: 10.1080/15376494.2020.1818331.
  • H. Yang, E. Daneshkhah, R. Augello, X. Xu, and E. Carrera, Numerical vibration correlation technique for thin-walled composite beams under compression based on accurate refined finite element, Compos. Struct., vol. 280, pp. 114861, 2022. DOI: 10.1016/j.compstruct.2021.114861.
  • R. Augello, E. Daneshkhah, X. Xu, and E. Carrera, Efficient CUF-based method for the vibrations of thin-walled open cross-section beams under compression, J. Sound Vib., vol. 510, pp. 116232, 2021. DOI: 10.1016/j.jsv.2021.116232.
  • X. Xu, E. Carrera, R. Augello, E. Daneshkhah, and H. Yang, Benchmarks for higher-order modes evaluation in the free vibration response of open thin-walled beams due to the cross-sectional deformations, Thin-Walled Struct., vol. 166, pp. 107965, 2021. DOI: 10.1016/j.tws.2021.107965.
  • E. Carrera, Multilayered shell theories accounting for layerwise mixed description, Part 1: Governing equations, AIAA J., vol. 37, no. 9, pp. 1107–1116, 1999. DOI: 10.2514/2.821.
  • E. Carrera, Multilayered shell theories accounting for layerwise mixed description, Part 2: Numerical evaluations, AIAA J., vol. 37, no. 9, pp. 1117–1124, 1999. DOI: 10.2514/2.822.
  • K.J. Bathe, Finite Element Procedure, Prentice Hall, Upper Saddle River, New Jersey, 1996.
  • B. Wu, A. Pagani, M. Filippi, W.Q. Chen, and E. Carrera, Large-deflection and post-buckling analyses of isotropic rectangular plates by Carrera Unified Formulation, Int. J. Non-Linear Mech., vol. 116, pp. 18–31, 2019. DOI: 10.1016/j.ijnonlinmec.2019.05.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.