299
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Experimental and numerical investigation of the behavior of three-dimensional orthogonal woven composite plates under high-velocity impact

, , ORCID Icon, , &
Pages 3293-3302 | Received 09 Jul 2021, Accepted 29 Apr 2022, Published online: 01 Jun 2022

References

  • S. Gogineni, X. L. Gao, N. V. David, and J. Q. Zheng, Ballistic impact of twaron ct709 plain weave fabrics, Mech. Adv. Mater. Struct., vol. 19, no. 6, pp. 441–452, 2012. DOI: 10.1080/15376494.2011.575532.
  • L. Alonso, C. Navarro, and S. K. García-Castillo, Experimental study of woven-laminates structures subjected to high-velocity impact, Mech. Adv. Mater. Struct., vol. 26, no. 12, pp. 1001–1007, 2019. DOI: 10.1080/15376494.2018.1526354.
  • J. N. Baucom, and M. A. Zikry, Evolution of failure mechanisms in 2D and 3D woven composite systems under quasi-static perforation, J. Compos. Mater., vol. 37, no. 18, pp. 1651–1674, 2003. DOI: 10.1177/0021998303035178.
  • L. Lv, B. Sun, Y. Qiu, and B. Gu, Energy absorptions and failure modes of 3D orthogonal hybrid woven composite struck by flat-ended rod, Polym. Compos., vol. 27, no. 4, pp. 410–416, 2006. DOI: 10.1002/pc.20208.
  • K. Ogi, T. Okabe, M. Takahashi, S. Yashiro, A. Yoshimura, and T. Ogasawara, Experimental characterization of high-speed impact damage behavior in a three-dimensionally woven SiC/SiC composite, Compos. Part A Appl. Sci. Manufact., vol. 41, no. 4, pp. 489–498, 2010. DOI: 10.1016/j.compositesa.2009.12.005.
  • R. Ghosh, and S. De, Z-fiber influence on high speed penetration of 3D orthogonal woven fiber composites, Mech. Mater., vol. 68, pp. 147–163, 2014. DOI: 10.1016/j.mechmat.2013.06.008.
  • A. Mountasir, G. Hoffmann, C. Cherif, M. Löser, and K. Großmann, Competitive manufacturing of 3D thermoplastic composite panels based on multi-layered woven structures for lightweight engineering, Compos. Struct., vol. 133, no. 1, pp. 415–424, 2015. DOI: 10.1016/j.compstruct.2015.07.071.
  • J. N. Baucom, and M. A. Zikry, Low-velocity impact damage progression in woven e-glass composite systems, Compos. Part A., vol. 36, no. 5, pp. 658–664, 2005. DOI: 10.1016/j.compositesa.2004.07.008.
  • X. Wang, B. Hu, Y. Feng, F. Liang, J. Moab, J. Xiong, and Y. Qiuabc, Low velocity impact properties of 3D woven basalt/aramid hybrid composites, Compos. Sci. Technol., vol. 68, no. 2, pp. 444–450, 2008. DOI: 10.1016/j.compscitech.2007.06.016.
  • Y. Luo, L. Lv, B. Sun, Y. Qiu, and B. Gu, Transverse impact behavior and energy absorption of three-dimensional orthogonal hybrid woven composites, Compos. Struct., vol. 81, no. 2, pp. 202–209, 2007. DOI: 10.1016/j.compstruct.2006.08.011.
  • M. Pankow, A. Salvi, A. M. Waas, C. F. Yen, and S. Ghiorse, Split Hopkinson pressure bar testing of 3D woven composites, Compos. Sci. Technol., vol. 71, no. 9, pp. 1196–1208, 2011. DOI: 10.1016/j.compscitech.2011.03.017.
  • M. Pankow, B. Justusson, A. Salvi, A. M. Waas, C. F. Yen, and S. Ghiorse, Shock response of 3D woven composites: an experimental investigation, Compos. Struct., vol. 93, no. 5, pp. 1337–1346, 2011. DOI: 10.1016/j.compstruct.2010.10.021.
  • M. Pankow, A. Waas, C. F. Yen, and S. Ghiorse, Shock response of 3D woven composites: a validated finite element investigation, Compos. Struct., vol. 93, no. 5, pp. 1347–1362, 2011. DOI: 10.1016/j.compstruct.2010.11.001.
  • X. Jia, Z. Huang, X. Zu, X. Gu, C. Zhu, and Z. Zhang, Experimental study on the performance of woven fabric rubber composite armor subjected to shaped charge jet impact, Int. J. Impact Eng., vol. 57, no. 1, pp. 134–144, 2013. DOI: 10.1016/j.ijimpeng.2013.01.014.
  • X. Jia, Z. Huang, X. Zu, X. Gu, and Q. Xiao, Theoretical analysis of the disturbance of shaped charge jet penetrating a woven fabric rubber composite armor, Int. J. Impact Eng., vol. 65, no. 1, pp. 69–78, 2014. DOI: 10.1016/j.ijimpeng.2013.11.005.
  • R. Muñoz, F. Martínez-Hergueta, F. Gálvez, C. González, and J. LLorca, Ballistic performance of hybrid 3D woven composites: experiments and simulations, Compos. Struct., vol. 127, pp. 141–151, 2015. DOI: 10.1016/j.compstruct.2015.03.021.
  • Y. A. Bahei-El-Din, and M. A. Zikry, Impact-induced deformation fields in 2D and 3D woven composites, Compos. Sci. Technol., vol. 63, no. 7, pp. 923–942, 2003. DOI: 10.1016/S0266-3538(03)00021-6.
  • Y. Xing, J. Tian, D. Zhu, and W. Xie, Homogenization method based on eigenvector expansions, Int. J. Multiscale. Comput. Eng., vol. 4, no. 1, pp. 197–206, 2006. DOI: 10.1615/IntJMultCompEng.v4.i1.130.
  • X. F. Wang, X. W. Wang, G. M. Zhou, and C. W. Zhou, Multi-scale analyses of 3D woven composite based on periodicity boundary conditions, J. Compos. Mater., vol. 41, no. 14, pp. 1773–1788, 2007. DOI: 10.1177/0021998306069891.
  • M. Ansar, X. Wang, and C. Zhou, Modeling strategies of 3D woven composites: a review, Compos. Struct., vol. 93, no. 8, pp. 1947–1963, 2011. DOI: 10.1016/j.compstruct.2011.03.010.
  • X. Jia, B. Sun, and B. Gu, Ballistic penetration of conically cylindrical steel projectile into 3D orthogonal woven composite: a finite element study at microstructure level, J. Compos. Mater., vol. 45, no. 9, pp. 965–987, 2011.
  • X. Jia, B. Sun, and B. Gu, A numerical simulation on ballistic penetration damage of 3D orthogonal woven fabric at microstructure level, Int. J. Damage Mech., vol. 21, no. 2, pp. 237–266, 2012. DOI: 10.1177/1056789510397078.
  • X. Zhang, Z. Chen, and Y. Liu, The Material Point Method - A Continuum-Based Particle Method for Extreme Loading Cases, Tsinghua University Press, Beijing, China, 2017.
  • Y. Liu, X. Si, P. Liu, and X. Zhang, Mesoscopic modeling and simulation of 3d orthogonal woven composites using material point method, Compos. Struct., vol. 203, pp. 425–435, 2018. DOI: 10.1016/j.compstruct.2018.07.008.
  • Z. Chen, Y. Su, A. M. Rajendran, H. Su, Y. Liu, and J. S, Study of constituent effect on the failure response of fiber reinforced composites to impact loading with the material point method, Compos. Struct., vol. 252, pp. 112751, 2020. DOI: 10.1016/j.compstruct.2020.112751.
  • D. Sulsky, Z. Chen, and H. L. Schreyer, A particle method for history-dependent materials, Comput. Methods Appl. Mech. Eng., vol. 118, no. 1–2, pp. 179–196, 1994. DOI: 10.1016/0045-7825(94)90112-0.
  • P. Huang, X. Zhang, S. Ma, and X. Huang, Contact algorithms for the material point method in impact and penetration simulation, Int. J. Numer. Meth. Eng., vol. 85, no. 4, pp. 498–517, 2011. DOI: 10.1002/nme.2981.
  • Y. Liu, H. Su, and C. Chen, Point-based mesoscopic modeling and simulation for two-step 3D braided composites, J. Aerosp. Eng., vol. 33, no. 5, pp. 04020049, 2020. DOI: 10.1061/(ASCE)AS.1943-5525.0001159.
  • Z. Ma, X. Zhang, and P. Huang, An object-oriented MPM framework for simulation of large deformation and contact of numerous grains, Comput. Model. Eng. Sci., vol. 55, no. 1, pp. 61–87, 2020.
  • J. P. Lambert, A Residual Velocity Predictive Model for Long Rod Penetrators, Technical Representative Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, 1978.
  • Y. Hou, L. Jiang, B. Sun, and B. Gu, Strain rate effects of tensile behaviors of 3-d orthogonal woven fabric: experimental and finite element analyses, Textile Res. J., vol. 83, no. 4, pp. 337–354, 2013. DOI: 10.1177/0040517512461706.
  • B. Sun, Y. Liu, and B. Gu, A unit cell approach of finite element calculation of ballistic impact damage of 3-d orthogonal woven composite, Compos. Part B-Eng., vol. 40, no. 6, pp. 552–560, 2009. DOI: 10.1016/j.compositesb.2009.01.012.
  • X. Liu, Testing and analysis of macro-micro mechanical properties of tungsten alloy, Master’s thesis, Chengdu, 2003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.