382
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Free vibration analysis of rotating FGP sandwich cylindrical shells with metal-foam core layer

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 3318-3331 | Received 08 Mar 2022, Accepted 29 Apr 2022, Published online: 28 May 2022

References

  • R.N. Arnold, and G.B. Warburton, Flexural vibrations of the walls of thin cylindrical shells having freely supported ends, Proc. R. Soc. London Ser. A Math. Phys. Sci., vol. 197, no. 1049, pp. 238–256, 1949.
  • C.W. Bert, and V. Birman, Parametric instability of thick, orthotropic, circular cylindrical shells, Acta Mech., vol. 71, no. 1–4, pp. 61–76, 1988. DOI: 10.1007/BF01173938.
  • A. Bhimaraddi, A higher order theory for free vibration analysis of circular cylindrical shells, Int. J. Solids Struct., vol. 20, no. 7, pp. 623–630, 1984. DOI: 10.1016/0020-7683(84)90019-2.
  • F.A. Fazzolari, and E. Carrera, Advances in the Ritz formulation for free vibration response of doubly-curved anisotropic laminated composite shallow and deep shells, Compos. Struct., vol. 101, pp. 111–128, 2013. DOI: 10.1016/j.compstruct.2013.01.018.
  • F. Fraternali, and J.N. Reddy, A penalty model for the analysis of laminated composite shells, Int. J. Solids Struct., vol. 30, no. 24, pp. 3337–3355, 1993. DOI: 10.1016/0020-7683(93)90088-O.
  • Y. Huang, B. Karami, D. Shahsavari, and A. Tounsi, Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels, Archiv. Civ. Mech. Eng., vol. 21, no. 4, pp. 139, 2021. DOI: 10.1007/s43452-021-00291-7.
  • A.A. Khdeir, and L. Librescu, Analysis of symmetric cross-ply laminated elastic plates using a higher-order theory: Part II—Buckling and free vibration, Compos. Struct., vol. 9, no. 4, pp. 259–277, 1988. DOI: 10.1016/0263-8223(88)90048-7.
  • I. Kreja, R. Schmidt, and J.N. Reddy, Finite elements based on a first-order shear deformation moderate rotation shell theory with applications to the analysis of composite structures, International J. Non-Linear Mech., vol. 32, no. 6, pp. 1123–1142, 1997. DOI: 10.1016/S0020-7462(96)00124-2.
  • A.M .A. Neves, et al., Free vibration analysis of functionally graded shells by a higher-order shear deformation theory and radial basis functions collocation, accounting for through-the-thickness deformations, Eur. J. Mech. - A/Solids, vol. 37, pp. 24–34, 2013. DOI: 10.1016/j.euromechsol.2012.05.005.
  • A. Nosier, and J.N. Reddy, Vibration and stability analyses of cross-ply laminated circular cylindrical shells, J. Sound Vibr., vol. 157, no. 1, pp. 139–159, 1992. DOI: 10.1016/0022-460X(92)90571-E.
  • A. Pagani, E. Carrera, R. Augello, and D. Scano, Use of Lagrange polynomials to build refined theories for laminated beams, plates and shells, Compo. Struct., vol. 276, pp. 114505, 2021. DOI: 10.1016/j.compstruct.2021.114505.
  • J.N. Reddy, Exact solutions of moderately thick laminated shells, J. Eng. Mech., vol. 110, no. 5, pp. 794–809, 1984. DOI: 10.1061/(ASCE)0733-9399(1984)110:5(794).
  • K.P. Soldatos, and V.P. Hadjigeorgiou, Three-dimensional solution of the free vibration problem of homogeneous isotropic cylindrical shells and panels, J. Sound Vibr., vol. 137, no. 3, pp. 369–384, 1990. DOI: 10.1016/0022-460X(90)90805-A.
  • K.Y. Lam, and C.T. Loy, Analysis of rotating laminated cylindrical shells by different thin shell theories, J. Sound Vibr., vol. 186, no. 1, pp. 23–35, 1995. DOI: 10.1006/jsvi.1995.0431.
  • K.Y. Lam, and C.T. Loy, Influence of boundary conditions for a thin laminated rotating cylindrical shell, Compos. Struct., vol. 41, no. 3–4, pp. 215–228, 1998. DOI: 10.1016/S0263-8223(98)00012-9.
  • K.Y. Lam, and C.T. Loy, On vibrations of thin rotating laminated composite cylindrical shells, Compos. Eng., vol. 4, no. 11, pp. 1153–1167, 1994. DOI: 10.1016/0961-9526(95)91289-S.
  • K.Y. Lam, and W. Qian, Free vibration of symmetric angle-ply thick laminated composite cylindrical shells, Compos. Part B: Eng., vol. 31, no. 4, pp. 345–354, 2000. DOI: 10.1016/S1359-8368(99)00075-X.
  • K.Y. Lam, and W. Qian, Vibrations of thick rotating laminated composite cylindrical shells, J. Sound Vibr., vol. 225, no. 3, pp. 483–501, 1999. DOI: 10.1006/jsvi.1999.2205.
  • H.T. Hu, and K.L. Wang, Vibration analysis of rotating laminated cylindrical shells, AIAA J., vol. 45, no. 8, pp. 2051–2061, 2007. DOI: 10.2514/1.28674.
  • K. Bouafia, et al., Bending and free vibration characteristics of various compositions of FG plates on elastic foundation via quasi 3D HSDT model, Steel Compos. Struct., vol. 41, no. 4, pp. 487–503, 2021.
  • S. Brischetto, F. Tornabene, N. Fantuzzi, and E. Viola, 3D exact and 2D generalized differential quadrature models for free vibration analysis of functionally graded plates and cylinders, Meccanica, vol. 51, no. 9, pp. 2059–2098, 2016. DOI: 10.1007/s11012-016-0361-y.
  • Y. Han, X. Zhu, T. Li, Y. Yu, and X. Hu, Free Vibration and Elastic Critical Load of Functionally Graded Material Thin Cylindrical Shells Under Internal Pressure, Int. J. Str. Stab. Dyn., vol. 18, no. 11, pp. 1850138, 2018. DOI: 10.1142/S0219455418501389.
  • V.T. Long, and H.V. Tung, Mechanical buckling analysis of thick FGM toroidal shell segments with porosities using Reddy’s higher order shear deformation theory, Mech. Adv. Mater. Struct., pp. 1–10, 2021. DOI: 10.1080/15376494.2021.1969606.
  • C.T. Loy, K.Y. Lam, and J.N. Reddy, Vibration of functionally graded cylindrical shells, Int. J. Mech. Sci., vol. 41, no. 3, pp. 309–324, 1999. DOI: 10.1016/S0020-7403(98)00054-X.
  • I.M. Mudhaffar, A. Tounsi, A. Chikh, M.A. Al-Osta, M.M. Al-Zahrani, and S.U. Al-Dulaijan, Hygro-thermo-mechanical bending behavior of advanced functionally graded ceramic metal plate resting on a viscoelastic foundation, Structures, vol. 33, pp. 2177–2189, 2021. DOI: 10.1016/j.istruc.2021.05.090.
  • N.T. Phuong, V.H. Nam, N.T. Trung, V.M. Duc, and P.V. Phong, Nonlinear stability of sandwich functionally graded cylindrical shells with stiffeners under axial compression in thermal environment, Int. J. Str. Stab. Dyn., vol. 19, no. 07, pp. 1950073, 2019. DOI: 10.1142/S0219455419500731.
  • S.C. Pradhan, C.T. Loy, K.Y. Lam, and J.N. Reddy, Vibration characteristics of functionally graded cylindrical shells under various boundary conditions, Appl. Acoust., vol. 61, no. 1, pp. 111–129, 2000. DOI: 10.1016/S0003-682X(99)00063-8.
  • S. Pradyumna, and J.N. Bandyopadhyay, Free vibration and buckling of functionally graded shell panels in thermal environments, Int. J. Str. Stab. Dyn., vol. 10, no. 05, pp. 1031–1053, 2010. DOI: 10.1142/S0219455410003889.
  • A. Rachid, et al., Mechanical behavior and free vibration analysis of FG doubly curved shells on elastic foundation via a new modified displacements field model of 2D and quasi-3D HSDTs, Thin-Walled Struct., vol. 172, pp. 108783, 2022. DOI: 10.1016/j.tws.2021.108783.
  • J.N. Reddy, Analysis of functionally graded plates, Int. J. Numer. Methods Eng., vol. 47, no. 1–3, pp. 663–684, 2000. DOI: 10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8.
  • H. Safarpour, Z.E. Hajilak, and M. Habibi, A size-dependent exact theory for thermal buckling, free and forced vibration analysis of temperature dependent FG multilayer GPLRC composite nanostructures restring on elastic foundation, Int. J. Mech. Mater. Des., vol. 15, no. 3, pp. 569–583, 2019. DOI: 10.1007/s10999-018-9431-8.
  • P. Toan Thang, T. Nguyen-Thoi, and J. Lee, Mechanical stability of metal foam cylindrical shells with various porosity distributions, Mech. Adv. Mater. Struct., vol. 27, no. 4, pp. 295–303, 2020. DOI: 10.1080/15376494.2018.1472338.
  • P.M. Vuong, and N.D. Duc, Nonlinear vibration of FGM moderately thick toroidal shell segment within the framework of Reddy’s third order-shear deformation shell theory, Int. J. Mech. Mater. Des., vol. 16, no. 2, pp. 245–220, 2020. DOI: 10.1007/s10999-019-09473-x.
  • E. Zarouni, M.J. Rad, and H. Tohidi, Free vibration analysis of fiber reinforced composite conical shells resting on Pasternak-type elastic foundation using Ritz and Galerkin methods, Int. J. Mech. Mater. Des., vol. 10, no. 4, pp. 421–438, 2014. DOI: 10.1007/s10999-014-9254-1.
  • J.-H. Zhang, and S.-R. Li, Free vibration of functionally graded truncated conical shells using the GDQ method, Mech. Adv. Mater. Struct., vol. 20, no. 1, pp. 61–73, 2013. DOI: 10.1080/15376494.2011.581415.
  • S. Hosseini-Hashemi, M.R. Ilkhani, and M. Fadaee, Accurate natural frequencies and critical speeds of a rotating functionally graded moderately thick cylindrical shell, Int. J. Mech. Sci., vol. 76, pp. 9–20, 2013. DOI: 10.1016/j.ijmecsci.2013.08.005.
  • P. Malekzadeh, and Y. Heydarpour, Free vibration analysis of rotating functionally graded cylindrical shells in thermal environment, Compos. Struct., vol. 94, no. 9, pp. 2971–2981, 2012. DOI: 10.1016/j.compstruct.2012.04.011.
  • S. Sun, D. Cao, and Q. Han, Vibration studies of rotating cylindrical shells with arbitrary edges using characteristic orthogonal polynomials in the Rayleigh–Ritz method, Int. J. Mech Sci., vol. 68, pp. 180–189, 2013. DOI: 10.1016/j.ijmecsci.2013.01.013.
  • M. Talebitooti, Thermal effect on free vibration of ring-stiffened rotating functionally graded conical shell with clamped ends, Mech. Adv. Mater. Struct., vol. 25, no. 2, pp. 155–165, 2018. DOI: 10.1080/15376494.2016.1255809.
  • M. Talebitooti, K. Daneshjou, and R. Talebitooti, Vibration and critical speed of orthogonally stiffened rotating fg cylindrical shell under thermo-mechanical loads using differential quadrature method, J. Therm. Stress., vol. 36, no. 2, pp. 160–188, 2013. DOI: 10.1080/01495739.2013.764807.
  • M.-T. Tran, and V.-L. Nguyen, Free vibration of rotating functionally graded material cylindrical shells with orthogonal stiffeners. In: S.V. Hoa, H. Hamada and N.D. Duc (eds.), Proceedings of the Eleventh Joint Canada-Japan Workshop on Composites and the First Joint Canada-Japan-Vietnam Workshop on Composites. Ho Chi Minh City, Vietnam: DEStech Publications, Inc, 2017.
  • M.-T. Tran, and V.-L. Nguyen, Vibration analysis of rotating functionally graded cylindrical shells with orthogonal stiffeners, Latin Am. J. Solids Struct., vol. 13, no. 15, pp. 2652–2669, 2016.
  • S. Xiang, G.C. Li, W. Zhang, and M.S. Yang, Natural frequencies of rotating functionally graded cylindrical shells, Appl. Math. Mech-Engl. Ed., vol. 33, no. 3, pp. 345–356, 2012. DOI: 10.1007/s10483-012-1554-6.
  • V.L. Nguyen, and T.P. Hoang, Analytical solution for free vibration of stiffened functionally graded cylindrical shell structure resting on elastic foundation, SN Appl. Sci., vol. 1, no. 10, pp. 1150, 2019. DOI: 10.1007/s42452-019-1168-y.
  • Z. Qin, F. Chu, and J. Zu, Free vibrations of cylindrical shells with arbitrary boundary conditions: A comparison study, Int. J. Mech. Sci., vol. 133, pp. 91–99, 2017. DOI: 10.1016/j.ijmecsci.2017.08.012.
  • Z. Qin, X. Pang, B. Safaei, and F. Chu, Free vibration analysis of rotating functionally graded CNT reinforced composite cylindrical shells with arbitrary boundary conditions, Compos. Struct., vol. 220, pp. 847–860, 2019. DOI: 10.1016/j.compstruct.2019.04.046.
  • S. Sun, L. Liu, and D. Cao, Nonlinear travelling wave vibrations of a rotating thin cylindrical shell, J. Sound Vibr., vol. 431, pp. 122–136, 2018. DOI: 10.1016/j.jsv.2018.05.042.
  • M.-T. Tran, V.-L. Nguyen, S.-D. Pham, and J. Rungamornrat, Free vibration of stiffened functionally graded circular cylindrical shell resting on Winkler–Pasternak foundation with different boundary conditions under thermal environment, Acta Mech., vol. 231, no. 6, pp. 2545–2564, 2020. DOI: 10.1007/s00707-020-02658-y.
  • Y. Wang, and D. Wu, Free vibration of functionally graded porous cylindrical shell using a sinusoidal shear deformation theory, Aerosp. Sci. Technol., vol. 66, pp. 83–91, 2017. DOI: 10.1016/j.ast.2017.03.003.
  • M. Jabbari, A. Mojahedin, A.R. Khorshidvand, and M.R. Eslami, Buckling analysis of a functionally graded thin circular plate made of saturated porous materials, J. Eng. Mech., vol. 140, no. 2, pp. 287–295, 2014. DOI: 10.1061/(ASCE)EM.1943-7889.0000663.
  • D. Chen, J. Yang, and S. Kitipornchai, Free and forced vibrations of shear deformable functionally graded porous beams, Int. J. Mech. Sci., vol. 108–109, pp. 14–22, 2016. DOI: 10.1016/j.ijmecsci.2016.01.025.
  • T.M. Tu, L.K. Hoa, D.X. Hung, and L.T. Hai, Nonlinear buckling and post-buckling analysis of imperfect porous plates under mechanical loads, J. Sandwich Struct. Mater., vol. 22, no. 6, pp. 1910–1930, 2020. DOI: 10.1177/1099636218789612.
  • Y.Q. Wang, C. Ye, and J.W. Zu, Vibration analysis of circular cylindrical shells made of metal foams under various boundary conditions, Int. J. Mech. Mater. Des., vol. 15, no. 2, pp. 333–344, 2019. DOI: 10.1007/s10999-018-9415-8.
  • H. Li, F. Pang, H. Chen, and Y. Du, Vibration analysis of functionally graded porous cylindrical shell with arbitrary boundary restraints by using a semi analytical method, Compos. Part B: Eng., vol. 164, pp. 249–264, 2019. DOI: 10.1016/j.compositesb.2018.11.046.
  • H. Li, F. Pang, Y. Ren, X. Miao, and K. Ye, Free vibration characteristics of functionally graded porous spherical shell with general boundary conditions by using first-order shear deformation theory, Thin-Walled Struct., vol. 144, pp. 106331, 2019. DOI: 10.1016/j.tws.2019.106331.
  • A.R. Ghasemi, and M. Meskini, Free vibration analysis of porous laminated rotating circular cylindrical shells, J. Vibr. Control., vol. 25, no. 18, pp. 2494–2508, 2019.
  • N.D. Duc, V.D. Quang, P.D. Nguyen, and T.M. Chien, Nonlinear dynamic response of functionally graded porous plates on elastic foundation subjected to thermal and mechanical loads, J. Appl. Comput. Mech., vol. 4, no. 4, pp. 245–259, 2018.
  • A.V. Lopatin, and E.V. Morozov, Fundamental frequency of a sandwich cylindrical panel with clamped edges, J. Sandwich Struct. Mater., vol. 23, no. 1, pp. 345–364, 2021.
  • M. Abouhamzeh, and M. Sadighi, Buckling optimisation of sandwich cylindrical panels, Curved Layered Struct., vol. 3, no. 1, pp. 137–145, 2016. DOI: 10.1515/cls-2016-0011.
  • A. Alibeigloo, and A. Rajaee Piteh Noee, Static and free vibration analysis of sandwich cylindrical shell based on theory of elasticity and using DQM, Acta Mech., vol. 228, no. 12, pp. 4123–4140, 2017. DOI: 10.1007/s00707-017-1914-4.
  • N.D. Duc, N.D. Tuan, P. Tran, T.Q. Quan, and N.V. Thanh, Nonlinear dynamic response and vibration of imperfect eccentrically stiffened sandwich third-order shear deformable FGM cylindrical panels in thermal environments, J. Sandwich Struct. Mater., vol. 21, no. 8, pp. 2816–2845, 2019. DOI: 10.1177/1099636217725251.
  • M.C. Trinh, N.D. Duc, and S.E. Kim, Effects of porosity and thermomechanical loading on free vibration and nonlinear dynamic response of functionally graded sandwich shells with double curvature, Aerosp. Sci. Technol., vol. 87, pp. 119–132, 2019. DOI: 10.1016/j.ast.2019.02.010.
  • S.I. Tahir, A. Tounsi, A. Chikh, M.A. Al-Osta, S.U. Al-Dulaijan, and M.M. Al-Zahrani, The effect of three-variable viscoelastic foundation on the wave propagation in functionally graded sandwich plates via a simple quasi-3D HSDT, Steel Compos. Struct., vol. 42, no. 4, pp. 501, 2022.
  • M.W. Zaitoun, et al., Influence of the visco-Pasternak foundation parameters on the buckling behavior of a sandwich functional graded ceramic–metal plate in a hygrothermal environment, Thin-Walled Struct., vol. 170, pp. 108549, 2022. DOI: 10.1016/j.tws.2021.108549.
  • S.I. Tahir, A. Chikh, A. Tounsi, M.A. Al-Osta, S.U. Al-Dulaijan, and M.M. Al-Zahrani, Wave propagation analysis of a ceramic-metal functionally graded sandwich plate with different porosity distributions in a hygro-thermal environment, Compos. Struct., vol. 269, pp. 114030, 2021. DOI: 10.1016/j.compstruct.2021.114030.
  • D. Kouider, et al., An original four-variable quasi-3D shear deformation theory for the static and free vibration analysis of new type of sandwich plates with both FG face sheets and FGM hard core, Steel Compos. Struct., vol. 41, no. 2, pp. 167–191, 2021.
  • Y. Conde, A. Pollien, and A. Mortensen, Functional grading of metal foam cores for yield-limited lightweight sandwich beams, Scr. Mater., vol. 54, no. 4, pp. 539–543, 2006. DOI: 10.1016/j.scriptamat.2005.10.050.
  • D.K. Thai, T.M. Tu, L.K. Hoa, D.X. Hung, and N.N. Linh, Nonlinear stability analysis of eccentrically stiffened functionally graded truncated conical sandwich shells with porosity, Materials, vol. 11, no. 11, pp. 2200, 2018. DOI: 10.3390/ma11112200.
  • A.M. Zenkour, and N.A. Alghamdi, Thermoelastic bending analysis of functionally graded sandwich plates, J. Mater. Sci., vol. 43, no. 8, pp. 2574–2589, 2008. DOI: 10.1007/s10853-008-2476-6.
  • D. Chen, S. Kitipornchai, and J. Yang, Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core, Thin-Walled Struct., vol. 107, pp. 39–48, 2016. DOI: 10.1016/j.tws.2016.05.025.
  • J. Zhao, Q. Wang, X. Deng, K. Choe, F. Xie, and C. Shuai, A modified series solution for free vibration analyses of moderately thick functionally graded porous (FGP) deep curved and straight beams, Compos. Part B: Eng., vol. 165, pp. 155–166, 2019. DOI: 10.1016/j.compositesb.2018.11.080.
  • J.N. Reddy, Theory and Analysis of Elastic Plates and Shells, CRC Press, Boca Raton, 2006.
  • P. Van Vinh, and A. Tounsi, Free vibration analysis of functionally graded doubly curved nanoshells using nonlocal first-order shear deformation theory with variable nonlocal parameters, Thin-Walled Struct., vol. 174, pp. 109084, 2022. DOI: 10.1016/j.tws.2022.109084.
  • H. Li, K.Y. Lam, and T.Y. Ng, Rotating Shell Dynamics, 1st ed. Elsevier, Amsterdam, 2005.
  • Z. Qin, B. Safaei, X. Pang, and F. Chu, Traveling wave analysis of rotating functionally graded graphene platelet reinforced nanocomposite cylindrical shells with general boundary conditions, Results Phys., vol. 15, pp. 102752, 2019. DOI: 10.1016/j.rinp.2019.102752.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.