311
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Nonlinear buckling mode transition analysis in nonlocal couple stress-based stability of FG piezoelectric nanoshells under thermo-electromechanical load

, ORCID Icon & ORCID Icon
Pages 3385-3405 | Received 01 Feb 2022, Accepted 01 May 2022, Published online: 13 May 2022

References

  • N.D. Duc, Nonlinear Static and Dynamic Stability of Functionally Graded Plates and Shells, Vietnam National University Press, Hanoi, 2014.
  • N.D. Duc, T.Q. Quan, and P.H. Cong, Nonlinear Vibration of Auxetic Plates and Shells, Vietnam National University Press, Hanoi, 2021.
  • P.-K. Yang, S.-A. Chou, C.-H. Hsu, R.J. Mathew, et al., Tin disulfide piezoelectric nanogenerators for biomechanical energy harvesting and intelligent human-robot interface applications, Nano Energy, vol. 75, pp. 104879, 2020. DOI: 10.1016/j.nanoen.2020.104879.
  • A. Panahi, A. Hassanzadeh, and A. Moulavi, Design of a low cost, double triangle, piezoelectric sensor for respiratory monitoring applications, Sens. Bio-Sens. Res., vol. 30, pp. 100378, 2020. DOI: 10.1016/j.sbsr.2020.100378.
  • B. Abdul, V. M. Mastronardi, A. Qualtieri, F. Guido, et al., Design, fabrication and characterization of piezoelectric cantilever MEMS for underwater application, Micro Nano Eng., vol. 7, pp. 100050, 2020. DOI: 10.1016/j.mne.2020.100050.
  • H. Su, X. Wang, C. Li, Z. Wang, et al., Enhanced energy harvesting ability of polydimethylsiloxane-BaTiO3-based flexible piezoelectric nanogenerator for tactile imitation application, Nano Energy, vol. 83, pp. 105809, 2021. DOI: 10.1016/j.nanoen.2021.105809.
  • Y. Liu, Z. Qin, and F. Chu, Nonlinear forced vibrations of functionally graded piezoelectric cylindrical shells under electric-thermo-mechanical loads, Int. J. Mech. Sci., vol. 201, pp. 106474, 2021. DOI: 10.1016/j.ijmecsci.2021.106474.
  • N.D. Dat, T.Q. Quan, V. Mahesh, and N.D. Duc, Analytical solutions for nonlinear magneto-electro-elastic vibration of smart sandwich plate with carbon nanotube reinforced nanocomposite core in hygrothermal environment, Int. J. Mech. Sci., vol. 186, pp. 105906, 2020. DOI: 10.1016/j.ijmecsci.2020.105906.
  • T.Q. Quan, N.V. Quyen, and N.D. Duc, An analytical approach for nonlinear thermo-electro-elastic forced vibration of piezoelectric penta – Graphene plates, Eur. J. Mech. A/Solids, vol. 85, pp. 104095, 2021. DOI: 10.1016/j.euromechsol.2020.104095.
  • B. Safaei, E.C. Onyibo, and D. Hurdoganoglu, Effect of static and harmonic loading on the honeycomb sandwich beam by using finite element method, FU Mech. Eng., 2022. DOI: 10.22190/FUME220201009S.
  • N.D. Dat, T.Q. Quan, and N.D. Duc, Vibration analysis of auxetic laminated plate with magneto-electro-elastic face sheets subjected to blast loading, Compos. Struct., vol. 280, pp. 114925, 2022.
  • L. Zhang, F. Zhang, Z. Qin, Q. Han, T. Wang, and F. Chu, Piezoelectric energy harvester for rolling bearings with capability of self-powered condition monitoring, Energy, vol. 238, pp. 121770, 2022. DOI: 10.1016/j.energy.2021.121770.
  • L.-L. Ke, Y.-S. Wang, and Z.-D. Wang, Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory, Compos. Struct., vol. 94, no. 6, pp. 2038–2247, 2012. DOI: 10.1016/j.compstruct.2012.01.023.
  • C. Zhang, W. Chen, and Ch. Zhang, Two-dimensional theory of piezoelectric plates considering surface effect, Eur. J. Mech. A/Solids, vol. 41, pp. 50–57, 2013. DOI: 10.1016/j.euromechsol.2013.02.005.
  • R. Ansari, V. Mohammadi, M. F. Shojaei, R. Gholami, and S. Sahmani, Postbuckling analysis of Timoshenko nanobeams including surface stress effect, Int. J. Eng. Sci., vol. 75, pp. 1–10, 2014. DOI: 10.1016/j.ijengsci.2013.10.002.
  • W.D. Yang, W. Zhang, X. Wang, and G. Lu, Nonlinear delamination buckling and expansion of functionally graded laminated piezoelectric composite shells, Int. J. Solids Struct., vol. 51, no. 3-4, pp. 894–903, 2014. DOI: 10.1016/j.ijsolstr.2013.11.017.
  • L.L. Zhang, J.X. Liu, X.Q. Fang, and G.Q. Nie, Size-dependent dispersion characteristics in piezoelectric nanoplates with surface effects, Phys. E, vol. 57, pp. 169–174, 2014. DOI: 10.1016/j.physe.2013.11.007.
  • Y.S. Li, and E. Pan, Static bending and free vibration of a functionally graded piezoelectric microplate based on the modified couple-stress theory, Int. J. Eng. Sci., vol. 97, pp. 40–59, 2015. DOI: 10.1016/j.ijengsci.2015.08.009.
  • S. Sahmani, M.M. Aghdam, and A.H. Akbarzadeh, Size-dependent buckling and postbuckling behavior of piezoelectric cylindrical nanoshells subjected to compression and electrical load, Mater. Des., vol. 105, pp. 341–351, 2016. DOI: 10.1016/j.matdes.2016.05.065.
  • N.D. Duc, Nonlinear thermal dynamic analysis of eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations using the Reddy’s third-order shear deformation shell theory, Eur. J. Mech. A/Solids, vol. 58, pp. 10–30, 2016. DOI: 10.1016/j.euromechsol.2016.01.004.
  • N.D. Duc, Nonlinear thermo-electro-mechanical dynamic response of shear deformable piezoelectric Sigmoid functionally graded sandwich circular cylindrical shells on elastic foundations, J. Sandw. Struct. Mater., vol. 20, pp. 351–378, 2018.
  • C. Liu, L.-L. Ke, J. Yang, S. Kitipornchai, and Y.-S. Wang, Buckling and post-buckling analyses of size-dependent piezoelectric nanoplates, Theor. Appl. Mech. Lett., vol. 6, no. 6, pp. 253–267, 2016. DOI: 10.1016/j.taml.2016.10.003.
  • M. Mohammadimehr, B. Rousta Navi, and A. Ghorbanpour Arani, Modified strain gradient Reddy rectangular plate model for biaxial buckling and bending analysis of double-coupled piezoelectric polymeric nanocomposite reinforced by FG-SWNT, Compos. Part B Eng., vol. 87, pp. 132–148, 2016. DOI: 10.1016/j.compositesb.2015.10.007.
  • C.-S. Zhu, X.-Q. Fang, J.-X. Liu, and H.-Y. Li, Surface energy effect on nonlinear free vibration behavior of orthotropic piezoelectric cylindrical nano-shells, Eur. J. Mech. A/Solids, vol. 66, pp. 423–432, 2017. DOI: 10.1016/j.euromechsol.2017.08.001.
  • S. Sahmani and M.M. Aghdam, Temperature-dependent nonlocal instability of hybrid FGM exponential shear deformable nanoshells including imperfection sensitivity, Int. J. Mech. Sci., vol. 122, pp. 129–142, 2017. DOI: 10.1016/j.ijmecsci.2017.01.009.
  • S. Sahmani and M.M. Aghdam, Nonlinear instability of hydrostatic pressurized hybrid FGM exponential shear deformable nanoshells based on nonlocal continuum elasticity, Compos. Part B Eng., vol. 114, pp. 404–417, 2017. DOI: 10.1016/j.compositesb.2017.01.038.
  • A. Farajpour, A. Rastgoo, and M. Mohammadi, Vibration, buckling and smart control of microtubules using piezoelectric nanoshells under electric voltage in thermal environment, Phys. B Condens. Matter, vol. 509, pp. 100–114, 2017. DOI: 10.1016/j.physb.2017.01.006.
  • J.C. Liu, Y.Q. Zhang, and L.F. Fan, Nonlocal vibration and biaxial buckling of double-viscoelastic-FGM-nanoplate system with viscoelastic Pasternak medium in between, Phys. Lett. A, vol. 381, no. 14, pp. 1228–1235, 2017. DOI: 10.1016/j.physleta.2017.01.056.
  • M.M. Keleshteri, H. Asadi, and Q. Wang, On the snap-through instability of post-buckled FG-CNTRC rectangular plates with integrated piezoelectric layers, Comput. Methods Appl. Mech. Eng., vol. 331, pp. 53–71, 2018. DOI: 10.1016/j.cma.2017.11.015.
  • J. Shen, H. Wang, and S. Zheng, Size-dependent pull-in analysis of a composite laminated micro-beam actuated by electrostatic and piezoelectric forces: Generalized differential quadrature method, Int. J. Mech. Sci., vol. 135, pp. 353–361, 2018. DOI: 10.1016/j.ijmecsci.2017.11.002.
  • X.-Q. Fang, C.-S. Zhu, J.-X. Liu, and X.-L. Liu, Surface energy effect on free vibration of nano-sized piezoelectric double-shell structure, Phys. B Condens. Matter, vol. 529, pp. 41–56, 2018. DOI: 10.1016/j.physb.2017.10.038.
  • N.D. Khoa, H.T. Thiem, and N.D. Duc, Nonlinear buckling and postbuckling of imperfect piezoelectric S-FGM circular cylindrical shells with metal-ceramic-metal layers in thermal environment using Reddy’s third-order shear deformation shell theory, Mech. Adv. Mater. Struct., vol. 26, no. 3, pp. 248–259, 2019. DOI: 10.1080/15376494.2017.1341583.
  • H. Safarpour, B. Ghanbari, and M. Ghadiri, Buckling and free vibration analysis of high speed rotating carbon nanotube reinforced cylindrical piezoelectric shell, Appl. Math. Model., vol. 65, pp. 428–442, 2019. DOI: 10.1016/j.apm.2018.08.028.
  • M. Arefi, E.M.R. Bidgoli, and T. Rabczuk, Effect of various characteristics of graphene nanoplatelets on thermal buckling behavior of FGRC micro plate based on MCST, Eur. J. Mech. A/Solids, vol. 77, pp. 103802, 2019. DOI: 10.1016/j.euromechsol.2019.103802.
  • S. Sahmani and B. Safaei, Nonlinear free vibrations of bi-directional functionally graded micro/nano-beams including nonlocal stress and microstructural strain gradient size effects, Thin-Walled Struct., vol. 140, pp. 342–356, 2019. DOI: 10.1016/j.tws.2019.03.045.
  • S. Sahmani and B. Safaei, Nonlocal strain gradient nonlinear resonance of bi-directional functionally graded composite micro/nano-beams under periodic soft excitation, Thin-Walled Struct., vol. 143, pp. 106226, 2019. DOI: 10.1016/j.tws.2019.106226.
  • S. Sahmani and B. Safaei, Influence of homogenization models on size-dependent nonlinear bending and postbuckling of bi-directional functionally graded micro/nano-beams, Appl. Math. Model., vol. 82, pp. 336–358, 2020. DOI: 10.1016/j.apm.2020.01.051.
  • D.Q. Chan, N.V. Thanh, N.D. Khoa, and N.D. Duc, Nonlinear dynamic analysis of piezoelectric functionally graded porous truncated conical panel in thermal environments, Thin-Walled Struct., vol. 154, pp. 106837, 2020. DOI: 10.1016/j.tws.2020.106837.
  • T.Q. Quan, V.M. Anh, V. Mahesh, and N.D. Duc, Vibration and nonlinear dynamic response of imperfect sandwich piezoelectric auxetic plate, Mech. Adv. Mater. Struct., vol. 29, no. 1, pp. 127–137, 2022. DOI: 10.1080/15376494.2020.1752864.
  • J.J. Mao, H.M. Lu, W. Zhang, and S.K. Lai, Vibrations of graphene nanoplatelet reinforced functionally gradient piezoelectric composite microplate based on nonlocal theory, Compos. Struct., vol. 236, pp. 111813, 2020. DOI: 10.1016/j.compstruct.2019.111813.
  • C.-S. Zhu, X.-Q. Fang, and J.-X. Liu, A new approach for smart control of size-dependent nonlinear free vibration of viscoelastic orthotropic piezoelectric doubly-curved nanoshells, Appl. Math. Model., vol. 77, pp. 137–168, 2020. DOI: 10.1016/j.apm.2019.07.027.
  • M. Arefi, Size-dependent electro-elastic analysis of a three-layered piezoelectric doubly curved nano shell, Mech. Adv. Mater. Struct., vol. 27, no. 23, pp. 1945–1965, 2020. DOI: 10.1080/15376494.2018.1533605.
  • C.H. Thai, A.J.M. Ferreira, T.D. Tran, and P. Phung-Van, A size-dependent quasi-3D isogeometric model for functionally graded graphene platelet-reinforced composite microplates based on the modified couple stress theory, Compos. Struct., vol. 234, pp. 111695, 2020. DOI: 10.1016/j.compstruct.2019.111695.
  • C.H. Thai, A.J.M. Ferreira, and P. Phung-Van, A nonlocal strain gradient isogeometric model for free vibration and bending analyses of functionally graded plates, Compos. Struct., vol. 251, pp. 112634, 2020. DOI: 10.1016/j.compstruct.2020.112634.
  • Y. Yuan, K. Zhao, Y. Han, S. Sahmani, and B. Safaei, Nonlinear oscillations of composite conical microshells with in-plane heterogeneity based upon a couple stress-based shell model, Thin-Walled Struct., vol. 154, pp. 106857, 2020. DOI: 10.1016/j.tws.2020.106857.
  • Y. Yuan, K. Zhao, Y. Zhao, S. Sahmani, and B. Safaei, Couple stress-based nonlinear buckling analysis of hydrostatic pressurized functionally graded composite conical microshells, Mech. Mater., vol. 148, pp. 103507, 2020. DOI: 10.1016/j.mechmat.2020.103507.
  • Y. Yuan, X. Zhao, Y. Zhao, S. Sahmani, and B. Safaei, Dynamic stability of nonlocal strain gradient FGM truncated conical microshells integrated with magnetostrictive facesheets resting on a nonlinear viscoelastic foundation, Thin-Walled Struct., vol. 159, pp. 107249, 2021. DOI: 10.1016/j.tws.2020.107249.
  • V. Borjalilou and M. Asghari, Size-dependent analysis of thermoelastic damping in electrically actuated microbeams, Mech. Adv. Mater. Struct., vol. 28, no. 9, pp. 952–962, 2021. DOI: 10.1080/15376494.2019.1614700.
  • Y.S. Joshan, S. Santapuri, and A. Srinivasa, Finite element modeling and analysis of low symmetry piezoelectric shells for design of shear sensors, Int. J. Mech. Sci., vol. 210, pp. 106726, 2021. DOI: 10.1016/j.ijmecsci.2021.106726.
  • R. Song, S. Sahmani, and B. Safaei, Isogeometric nonlocal strain gradient quasi-three-dimensional plate model for thermal postbuckling of porous functionally graded microplates with central cutout with different shapes, Appl. Math. Mech. Engl. Ed., vol. 42, no. 6, pp. 771–786, 2021. DOI: 10.1007/s10483-021-2725-7.
  • S.-X. Chen, S. Sahmani, and B. Safaei, Size-dependent nonlinear bending behavior of porous FGM quasi-3D microplates with a central cutout based on nonlocal strain gradient isogeometric finite element modelling, Eng. Comput., vol. 37, no. 2, pp. 1657–1678, 2021. DOI: 10.1007/s00366-021-01303-z.
  • R. Rao, S. Sahmani, and B. Safaei, Isogeometric nonlinear bending analysis of porous FG composite microplates with a central cutout modeled by the couple stress continuum quasi-3D plate theory, Arch. Civ. Mech. Eng., vol. 21, no. 3, pp. 98, 2021. DOI: 10.1007/s43452-021-00250-2.
  • H. Tang and H.-L. Dai, Dynamic instability zone analysis of laminated piezoelectric cylindrical shell with delamination under hygrothermal effects, Appl. Math. Model., vol. 99, pp. 27–40, 2021. DOI: 10.1016/j.apm.2021.04.014.
  • F. Fan, Y. Xu, S. Sahmani, and B. Safaei, Modified couple stress-based geometrically nonlinear oscillations of porous functionally graded microplates using NURBS-based isogeometric approach, Comput. Methods Appl. Mech. Eng., vol. 372, pp. 113400, 2020. DOI: 10.1016/j.cma.2020.113400.
  • F. Fan, S. Sahmani, and B. Safaei, Isogeometric nonlinear oscillations of nonlocal strain gradient PFGM micro/nano-plates via NURBS-based formulation, Compos. Struct., vol. 255, pp. 112969, 2021. DOI: 10.1016/j.compstruct.2020.112969.
  • F. Fan, B. Safaei, and S. Sahmani, Buckling and postbuckling response of nonlocal strain gradient porous functionally graded micro/nano-plates via NURBS-based isogeometric analysis, Thin-Walled Struct., vol. 159, pp. 107231, 2021. DOI: 10.1016/j.tws.2020.107231.
  • F. Fan, X. Cai, S. Sahmani, and B. Safaei, Isogeometric thermal postbuckling analysis of porous FGM quasi-3D nanoplates having cutouts with different shapes based upon surface stress elasticity, Compos. Struct., vol. 262, pp. 113604, 2021. DOI: 10.1016/j.compstruct.2021.113604.
  • Z. Yin, J. Zhang, F. Yang, W. Ye, J. Liu, and G. Lin, An efficient scaled boundary finite element approach in bending and bucking analysis of functionally graded piezoelectric plates, Eng. Anal. Bound. Elem., vol. 132, pp. 168–181, 2021. DOI: 10.1016/j.enganabound.2021.07.015.
  • Y. Yang, B. Chen, W. Lin, Y. Li, and Y. Dong, Vibration and symmetric thermal buckling of asymmetric annular sandwich plates with piezoelectric/GPLRC layers rested on foundation, Aerosp. Sci. Technol., vol. 110, pp. 106495, 2021. DOI: 10.1016/j.ast.2021.106495.
  • M.S.H. Al-Furjan, R. Dehini, M. Khorami, M. Habibi, and D.W. Jung, On the dynamics of the ultra-fast rotating cantilever orthotropic piezoelectric nanodisk based on nonlocal strain gradient theory, Compos. Struct., vol. 255, pp. 112990, 2021. DOI: 10.1016/j.compstruct.2020.112990.
  • P. Tang, Y. Sun, S. Sahmani, and D.M. Madyira, Isogeometric small-scale-dependent nonlinear oscillations of quasi-3D FG inhomogeneous arbitrary-shaped microplates with variable thickness, J. Braz. Soc. Mech. Sci. Eng., vol. 43, no. 7, pp. 343, 2021. DOI: 10.1007/s40430-021-03057-7.
  • Z. Yang, H. Lu, S. Sahmani, and B. Safaei, Isogeometric couple stress continuum-based linear and nonlinear flexural responses of functionally graded composite microplates with variable thickness, Arch. Civ. Mech. Eng., vol. 21, no. 3, pp. 114, 2021. DOI: 10.1007/s43452-021-00264-w.
  • P. Wang, P. Yuan, S. Sahmani, and B. Safaei, Surface stress size dependency in nonlinear free oscillations of FGM quasi-3D nanoplates having arbitrary shapes with variable thickness using IGA, Thin-Walled Struct., vol. 166, pp. 108101, 2021. DOI: 10.1016/j.tws.2021.108101.
  • R. Hou, S. Sahmani, and B. Safaei, Nonlinear oscillations of elliptical and sector prefabricated nanoplate-type structures made of functionally graded building material, Phys. Scr., vol. 96, no. 11, pp. 115704, 2021. DOI: 10.1088/1402-4896/ac169d.
  • S. Sahmani, B. Safaei, and F. Aldakheel, Surface elastic-based nonlinear bending analysis of functionally graded nanoplates with variable thickness, Eur. Phys. J. Plus, vol. 136, no. 6, pp. 676, 2021. DOI: 10.1140/epjp/s13360-021-01667-7.
  • N.V. Nguyen, and J. Lee, On the static and dynamic responses of smart piezoelectric functionally graded graphene platelet-reinforced microplates, Int. J. Mech. Sci., vol. 197, pp. 106310, 2021. DOI: 10.1016/j.ijmecsci.2021.106310.
  • A. Ghobadi, H. Golestanian, Y. Tadi Beni, and K.K. Zur, On the size-dependent nonlinear thermo-electro-mechanical free vibration analysis of functionally graded flexoelectric nano-plate, Commun. Nonlinear Sci. Numer. Simul., vol. 95, pp. 105585, 2021. DOI: 10.1016/j.cnsns.2020.105585.
  • H. Lu, J. Zhou, S. Sahmani, and B. Safaei, Nonlinear stability of axially compressed couple stress-based composite micropanels reinforced with random checkerboard nanofillers, Phys. Scr., vol. 96, no. 12, pp. 125703, 2021. DOI: 10.1088/1402-4896/ac1d7f.
  • J.H. Sun, J. Zhou, S. Sahmani, and B. Safaei, Microstructural size dependency in nonlinear lateral stability of random reinforced microshells via meshfree-based applied mathematical modeling, Int. J. Struct. Stab. Dyn., vol. 21, no. 12, pp. 2150164, 2021. DOI: 10.1142/S0219455421501649.
  • Y. Zhang, S. Sahmani, and B. Safaei, Meshfree-based applied mathematical modeling for nonlinear stability analysis of couple stress-based lateral pressurized randomly reinforced microshells, Eng. Comput., 2021. DOI: 10.1007/s00366-021-01472-x.
  • H. Darban, F. Fabbrocino, L. Feo, and R. Luciano, Size-dependent buckling analysis of nanobeams resting on two-parameter elastic foundation through stress-driven nonlocal elasticity model, Mech. Adv. Mater. Struct., vol. 28, no. 23, pp. 2408–2416, 2021. DOI: 10.1080/15376494.2020.1739357.
  • J. Wang, B. Ma, J. Gao, H. Liu, B. Safaei, and S. Sahmani, Nonlinear stability characteristics of porous graded composite microplates including various microstructural-dependent strain gradient tensors, Int. J. Appl. Mech., vol. 14, no. 01, pp. 2150129, 2022. DOI: 10.1142/S1758825121501295.
  • J. N. Reddy, Theory and Analysis of Elastic Plates and Shells, CRC Press, Boca Raton, 2006.
  • Q. Wang, On buckling of column structures with a pair of piezoelectric layers, Eng. Struct., vol. 24, no. 2, pp. 199–205, 2002. DOI: 10.1016/S0141-0296(01)00088-8.
  • A.C. Eringen, Linear theory of nonlocal elasticity and dispersion of plane waves, Int. J. Eng. Sci., vol. 10, no. 5, pp. 425–435, 1972. DOI: 10.1016/0020-7225(72)90050-X.
  • F. Yang, A.C.M. Chong, D.C.C. Lam, and P. Tong, Couple stress based strain gradient theory for elasticity, Int. J. Solids Struct., vol. 39, no. 10, pp. 2731–2743, 2002. DOI: 10.1016/S0020-7683(02)00152-X.
  • C.H. Thai and P. Phung-Van, A meshfree approach using naturally stabilized nodal integration for multilayer FG GPLRC complicated plate structures, Eng. Anal. Bound. Elem., vol. 117, pp. 346–358, 2020. DOI: 10.1016/j.enganabound.2020.04.001.
  • S. Sahmani and B. Safaei, Microstructural-dependent nonlinear stability analysis of random checkerboard reinforced composite micropanels via moving Kriging meshfree approach, Eur. Phys. J. Plus, vol. 136, no. 8, pp. 806, 2021. DOI: 10.1140/epjp/s13360-021-01706-3.
  • C.H. Thai, A.J.M. Ferreira, H. Nguyen-Xuan, and P. Phung-Van, A size dependent meshfree model for functionally graded plates based on the nonlocal strain gradient theory, Compos. Struct., vol. 272, pp. 114169, 2021. DOI: 10.1016/j.compstruct.2021.114169.
  • B.B. Wang, C. Lu, C.Y. Fan, and M.H. Zhao, A meshfree method with gradient smoothing for free vibration and buckling analysis of a strain gradient thin plate, Eng. Anal. Bound. Elem., vol. 132, pp. 159–167, 2021. DOI: 10.1016/j.enganabound.2021.07.014.
  • Z. Yang, B. Safaei, S. Sahmani, and Y. Zhang, A couple-stress-based moving Kriging meshfree shell model for axial postbuckling analysis of random checkerboard composite cylindrical microshells, Thin-Walled Struct., vol. 170, pp. 108631, 2022. DOI: 10.1016/j.tws.2021.108631.
  • W. Chen, W.M. Luo, S.Y. Chen, and L.X. Peng, A FSDT meshfree method for free vibration analysis of arbitrary laminated composite shells and spatial structures, Compos. Struct., vol. 279, pp. 114763, 2022. DOI: 10.1016/j.compstruct.2021.114763.
  • H. Liu, B. Safaei, and S. Sahmani, Combined axial and lateral stability behavior of random checkerboard reinforced cylindrical microshells via a couple stress-based moving Kriging meshfree model, Arch. Civ. Mech. Eng., vol. 22, no. 1, pp. 15, 2022. DOI: 10.1007/s43452-021-00338-9.
  • L. Gu, Moving kriging interpolation and element-free Galerkin method, Int. J. Numer. Meth. Eng., vol. 56, no. 1, pp. 1–11, 2003. DOI: 10.1002/nme.553.
  • C.H. Thai, V.N.V. Do, and H. Nguyen-Xuan, An improved moving Kriging-based meshfree method for static, dynamic and buckling analyses of functionally graded isotropic and sandwich plates, Eng. Anal. Bound. Elem., vol. 64, pp. 122–136, 2016. DOI: 10.1016/j.enganabound.2015.12.003.
  • C.H. Thai, A.J.M. Ferreira, and H. Nguyen-Xuan, Naturally stabilized nodal integration meshfree formulations for analysis of laminated composite and sandwich plates, Compos. Struct., vol. 178, pp. 260–276, 2017. DOI: 10.1016/j.compstruct.2017.06.049.
  • S.S. Vel, R.C. Mewer, and R.C. Batra, Analytical solution for the cylindrical bending vibration of piezoelectric composite plates, Int. J. Solids Struct., vol. 41, no. 5-6, pp. 1625–1643, 2004. DOI: 10.1016/j.ijsolstr.2003.10.012.
  • F. Ramirez, P.R. Heyliger, and E. Pan, Free vibration response of two-dimensional magneto-electro-elastic laminated plates, J. Sound Vib., vol. 292, no. 3-5, pp. 626–644, 2006. DOI: 10.1016/j.jsv.2005.08.004.
  • J. Yang, Special Topics in the Theory of Piezoelectricity, Springer, New York, 2009.
  • M. Bodaghi and M. Shakeri, An analytical approach for free vibration and transient response of functionally graded piezoelectric cylindrical panels subjected to impulsive loads, Compos. Struct., vol. 94, no. 5, pp. 1721–1735, 2012. DOI: 10.1016/j.compstruct.2012.01.009.
  • P. Som and A. Deb, A generalized Ritz-based method for nonlinear buckling of thin cylindrical shells, Thin-Walled Struct., vol. 76, pp. 14–27, 2014. DOI: 10.1016/j.tws.2013.09.024.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.