188
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Plastic behavior and improved constitutive model of a laser-solid-formed alloy under the synergistic effects of temperature, strain rate, and stress state

, , , , &
Pages 3406-3418 | Received 01 May 2022, Accepted 01 May 2022, Published online: 11 May 2022

References

  • A.S. Khan and S.J. Yu, Deformation induced anisotropic responses of Ti–6Al–4V alloy. Part I: experiments, Int. J. Plast., vol. 38, pp. 1–13, 2012. DOI: 10.1016/j.ijplas.2012.03.015.
  • V. Tuninetti, G. Gilles, O. Milis, T. Pardoen, and A.M. Habraken, Anisotropy and tension–compression asymmetry modeling of the room temperature plastic response of Ti–6Al–4V, Int. J. Plast., vol. 67, pp. 53–68, 2015. DOI: 10.1016/j.ijplas.2014.10.003.
  • J.X. Zhao, H. Liu, Y. Zhou, Y.F. Chen, and J.M. Gong, Effect of relative density on the compressive properties of Ti6Al4V diamond lattice structures with shells, Mech. Adv. Mater. Struct., pp. 1–58, 2021. DOI: 10.1080/15376494.2021.1893418.
  • B.E. Carroll, T.A. Palmer, and A.M. Beese, Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy deposition additive manufacturing, Acta Mater., vol. 87, pp. 309–320, 2015. DOI: 10.1016/j.actamat.2014.12.054.
  • L. Bai, X. Zhou, X. Chen, L. Xin, J. Zhang, J. Yang, K. Li, and Y. Sun, Influence of relative density distribution rules on the mechanical compression responses of additive manufactured Ti6Al4V graded lattice structures, Mech. Adv. Mater. Struct., pp. 1–17, 2021. DOI: 10.1080/15376494.2021.2009600.
  • X.P. Ren, H.Q. Li, H. Guo, F.L. Shen, C. X. Qin, E.T. Zhao, and X.Y. Fang, A comparative study on mechanical properties of Ti–6Al–4V alloy processed by additive manufacturing vs. traditional processing, Mater. Sci. Eng. A., vol. 817, pp. 141384, 2021. DOI: 10.1016/j.msea.2021.141384.
  • A.H. Chern, P. Nandwana, T. Yuan, M.M. Kirka, R.R. Dehoff, P.K. Liaw, and C.E. Duty, A review on the fatigue behavior of Ti-6Al-4V fabricated by electron beam melting additive manufacturing, Int. J. Fatigue., vol. 119, pp. 173–184, 2019. DOI: 10.1016/j.ijfatigue.2018.09.022.
  • M.J. Bermingham, L. Nicastro, D. Kent, Y. Chen, and M.S. Dargusch, Optimising the mechanical properties of Ti-6Al-4V components produced by wire + arc additive manufacturing with post-process heat treatments, J. Alloys Compd., vol. 753, pp. 247–255, 2018. DOI: 10.1016/j.jallcom.2018.04.158.
  • Z. Liu, B. He, T. Lyu, and Y. Zou, A review on additive manufacturing of titanium alloys for aerospace applications: directed energy deposition and beyond Ti–6Al–4V, JOM., vol. 73, no. 6, pp. 1804–1818, 2021. DOI: 10.1007/s11837-021-04670-6.
  • W.S.W. Harun, N.S. Manam, M.S.I.N. Kamariah, S. Sharif, A.H. Zulkifly, I. Ahmad, and H. Miura, A review of powdered additive manufacturing techniques for Ti-6al-4v biomedical applications, Powder Technol., vol. 331, pp. 74–97, 2018. DOI: 10.1016/j.powtec.2018.03.010.
  • D.G.L. Prakash, R. Ding, R.J. Moat, I. Jones, P.J. Withers, J. Quinta da Fonseca, and M. Preuss, Deformation twinning in Ti-6Al-4V during low strain rate deformation to moderate strains at room temperature, Mater. Sci. Eng. A., vol. 527, no. 21/22, pp. 5734–5744, 2010. DOI: 10.1016/j.msea.2010.05.039.
  • P.H. Li, W.G. Guo, K.B. Yuan, Y. Su, J.J. Wang, X. Lin, and Y.P. Li., Effects of processing defects on the dynamic tensile mechanical behavior of laser-solid-formed Ti-6Al-4V, Mater Charact., vol. 140, pp. 15–29, 2018. DOI: 10.1016/j.matchar.2018.03.032.
  • Y.W. Xiao, Y.C. Lin, Y.Q. Jiang, X.Y. Zhang, G.D. Pang, D. Wang, and K.C. Zhou., A dislocation density-based model and processing maps of Ti-55511 alloy with bimodal microstructures during hot compression in α+ β region, Mater. Sci. Eng. A., vol. 790, pp. 139692, 2020. DOI: 10.1016/j.msea.2020.139692.
  • Y.Q. Jiang, Y.C. Lin, G.Q. Wang, G.D. Pang, M.S. Chen, and Z.C. Huang, Microstructure evolution and a unified constitutive model for a Ti-55511 alloy deformed in β region, J. Alloys Compd., vol. 870, pp. 159534, 2021. DOI: 10.1016/j.jallcom.2021.159534.
  • G. Gilles, W. Hammami, V. Libertiaux, O. Cazacu, J.H. Yoon, T. Kuwabara, A.M. Habraken, and L. Duchene., Experimental characterization and elasto-plastic modeling of the quasi-static mechanical response of TA-6V at room temperature, Int. J. Solids Struct., vol. 48, no. 9, pp. 1277–1289, 2011. DOI: 10.1016/j.ijsolstr.2011.01.011.
  • D.D. Yin, C.J. Boehlert, L.J. Long, G.H. Huang, H. Zhou, J. Zheng, Q.D. Wang, Tension-compression asymmetry and the underlying slip/twinning activity in extruded Mg–Y sheets, Int. J. Plast., vol. 136, pp. 102878, 2021. DOI: 10.1016/j.ijplas.2020.102878.
  • Q. Zhang, J. Zhang, and Y. Wang, Effect of strain rate on the tension–compression asymmetric responses of Ti–6.6 Al–3.3 Mo–1.8 Zr–0.29 Si, Mater. Des., vol. 61, pp. 281–285, 2014. DOI: 10.1016/j.matdes.2014.05.004.
  • J. Suryawanshi, G. Singh, S. Msolli, M.H. Jhon, and U. Ramamurty, Tension-compression asymmetry and shear strength of titanium alloys, Acta Mater., vol. 221, pp. 117392, 2021. DOI: 10.1016/j.actamat.2021.117392.
  • D. C. Drucker and W. Prager, Soil mechanics and plastic analysis or limit design, Quart. Appl. Math., vol. 10, no. 2, pp. 157–165, 1952. DOI: 10.1090/qam/48291.
  • J.P. Bardet, Lode dependences for isotropic pressure-sensitive elastoplastic materials, J Appl Mech., vol. 57, no. 3, pp. 498–506, 1990. DOI: 10.1115/1.2897051.
  • O. Richmond and W. A. Spitzig, Pressure dependence and dilatancy of plastic flow, Theor. Appl. Mech., pp. 377–386, 1980.
  • Michael. Brünig, Simone. Berger, and Hans. Obrecht, Numerical simulation of the localization behavior of hydrostatic-stress-sensitive metals, Int. J. Mech. Sci., vol. 42, no. 11, pp. 2147–2166, 2000. DOI: 10.1016/S0020-7403(00)00002-3.
  • Y.L. Bai and T. Wierzbicki, A new model of metal plasticity and fracture with pressure and Lode dependence, Int. J. Plast., vol. 24, no. 6, pp. 1071–1096, 2008. DOI: 10.1016/j.ijplas.2007.09.004.
  • X.S. Gao, T.T. Zhang, M. Hayden, and C. Roe, Effects of the stress state on plasticity and ductile failure of an aluminum 5083 alloy, Int. J. Plast., vol. 25, no. 12, pp. 2366–2382, 2009. DOI: 10.1016/j.ijplas.2009.03.006.
  • A.S. Khan, S.J. Yu, and H.W. Liu, Deformation induced anisotropic responses of Ti–6Al–4V alloy Part II: A strain rate and temperature dependent anisotropic yield criterion, Int. J. Plast., vol. 38, pp. 14–26, 2012. DOI: 10.1016/j.ijplas.2012.03.013.
  • M.R. de Sotto, P. Longère, V. Doquet, and J. Papasidero, A constitutive model for a rate and temperature-dependent, plastically anisotropic titanium alloy, Int. J. Plast., vol. 134, pp. 102777, 2020. DOI: 10.1016/j.ijplas.2020.102777.
  • P. Zhou, W.G. Guo, Y. Su, J. J. Wang, X. Lin, and W.D. Huang, Microstructure and mechanical properties of laser solid formed Ti-6Al-4V alloy under dynamic shear loading, J. Mater. Eng. Perform., vol. 26, no. 7, pp. 3121–3132, 2017. DOI: 10.1007/s11665-017-2748-x.
  • J.J. Wang, W.G. Guo, P.H. Li, P. Zhou, and Z.Q. Wang, Dynamic tensile properties of a single crystal Nickel-base superalloy at high temperatures measured with an improved SHTB technique, Mater. Sci. Eng. A., vol. 670, pp. 1–8, 2016. DOI: 10.1016/j.msea.2016.06.002.
  • R. Kapoor and S. Nemat-Nasser, Determination of temperature rise during high strain rate deformation, Mech. Mater., vol. 27, no. 1, pp. 1–12, 1998. DOI: 10.1016/S0167-6636(97)00036-7.
  • M.C. Mataya and V.E. Sackschewsky, Effect of internal heating during hot compression on the stress–strain behavior of alloy 304L, MMTA., vol. 25, no. 12, pp. 2737–2752, 1994. DOI: 10.1007/BF02649226.
  • S.M.J. Babu, S.V.S.N. Murty, N. Prabhu, and B.P. Kashyap, An evidence of pseudo-elasticity in a caliber rolled Ti-6Al-4V alloy and its effect on tension-compression flow asymmetry, Mater. Sci. Eng. A., vol. 754, pp. 650–658, 2019. DOI: 10.1016/j.msea.2019.03.123.
  • J.C. Williams, R.G. Baggerly, and N.E. Paton, Deformation behavior of HCP Ti-Al alloy single crystals, Metall. Mat. Trans. A., vol. 33, no. 3, pp. 837–850, 2002. DOI: 10.1007/s11661-002-0153-y.
  • Z. W. Wyatt, W. J. Joost, D. Zhu, and S. Ankem, Deformation mechanisms and kinetics of time-dependent twinning in an α-titanium alloy, Int J Plast., vol. 39, pp. 119–131, 2012. DOI: 10.1016/j.ijplas.2012.06.001.
  • M.A.W. Lowden and W.B. Hutchinson, Texture strengthening and strength differential in titanium-6Al-4V, MTA., vol. 6, no. 3, pp. 441–448, 1975. DOI: 10.1007/BF02658401.
  • I.P. Jones and W.B. Hutchinson, Stress-state dependence of slip in Titanium-6Al-4V and other HCP metals, Acta Metall., vol. 29, no. 6, pp. 951–968, 1981. DOI: 10.1016/0001-6160(81)90049-3.
  • F. Coghe, W. Tirry, L. Rabet, D. Schryvers, and P. Van Houtte, Importance of twinning in static and dynamic compression of a Ti–6Al–4V titanium alloy with an equiaxed microstructure, Mater Sci Eng A., vol. 537, pp. 1–10, 2012. DOI: 10.1016/j.msea.2011.12.047.
  • M.J. Philippe, M. Serghat, P. Van Houtte, and C. Esling, Modelling of texture evolution for materials of hexagonal symmetry—II. application to zirconium and titanium α or near α alloys, Acta Metall., vol. 43, no. 4, pp. 1619–1630, 1995. DOI: 10.1016/0956-7151(94)00329-G.
  • C.Y. Gao, L.C. Zhang, and H.X. Yan, A new constitutive model for HCP metals, Mater Sci Eng A., vol. 528, no. 13-14, pp. 4445–4452, 2011. DOI: 10.1016/j.msea.2011.02.053.
  • J.J. Wang, W.G. Guo, X.S. Gao, and J. Su, The third-type of strain aging and the constitutive modeling of a Q235B steel over a wide range of temperatures and strain rates, Int. J. Plast., vol. 65, pp. 85–107, 2015. DOI: 10.1016/j.ijplas.2014.08.017.
  • S.L. Yan, H. Yang, H.W. Li, and X. Yao, A unified model for coupling constitutive behavior and micro-defects evolution of aluminum alloys under high-strain-rate deformation, Int. J. Plast., vol. 85, pp. 203–229, 2016. DOI: 10.1016/j.ijplas.2016.07.011.
  • Y. Song and W. Peterson, Theoretical study for dynamic strain aging in niobium: effect of temperature and strain rate on the flow stress, Met Mater. Int., vol. 27, pp. 1–14, 2020.
  • E.C. Aifantis, The physics of plastic deformation, Int. J. Plast., vol. 3, no. 3, pp. 211–247, 1987. DOI: 10.1016/0749-6419(87)90021-0.
  • D.J. Bammann and E.C. Aifantis, A model for finite-deformation plasticity, Acta Mech., vol. 69, no. 1-4, pp. 97–117, 1987. DOI: 10.1007/BF01175716.
  • L.P. Kubin and Y. Estrin, Evolution of dislocation densities and the critical conditions for the Portevin-Le Chatelier effect, Acta Metall. Mater., vol. 38, no. 5, pp. 697–708, 1990. DOI: 10.1016/0956-7151(90)90021-8.
  • D. J. Bammann and E. C. Aifantis, On a proposal for a continuum with microstructure, Acta Mech., vol. 45, no. 1/2, pp. 91–121, 1982. DOI: 10.1007/BF01295573.
  • U.F. Kocks, A.S. Argon, and M.F. Ashby, 1975. Thermodynamics and Kinetics of Slip, Pergamon Press, Oxford.
  • S. Nemat-Nasser and Y.L. Li, Flow stress of fcc polycrystals with application to OFHC Cu, Acta Mater., vol. 46, no. 2, pp. 565–577, 1998. DOI: 10.1016/S1359-6454(97)00230-9.
  • K.G. Hoge and A.K. Mukherjee, The temperature and strain rate dependence of the flow stress of tantalum, J. Mater. Sci., vol. 12, no. 8, pp. 1666–1672, 1977. DOI: 10.1007/BF00542818.
  • C.Y. Gao and L.C. Zhang, Constitutive modelling of plasticity of fcc metals under extremely high strain rates, Int J Plast., vol. 32/33, pp. 121–133, 2012. DOI: 10.1016/j.ijplas.2011.12.001.
  • M.A. Meyers, O. Vöhringer, and V.A. Lubarda, The onset of twinning in metals: a constitutive description, Acta Mater., vol. 49, no. 19, pp. 4025–4039, 2001. DOI: 10.1016/S1359-6454(01)00300-7.
  • L. Lu, M. Dao, T. Zhu, and J. Li, Size dependence of rate-controlling deformation mechanisms in nanotwinned copper, Scr Mater., vol. 60, no. 12, pp. 1062–1066, 2009. DOI: 10.1016/j.scriptamat.2008.12.039.
  • A.S. Khan and S. Huang, 1995. Continuum Theory of Plasticity, Wiley, New York.
  • O. Cazacu, B. Plunkett, and F. Barlat, Orthotropic yield criterion for hexagonal closed packed metals, Int. J. Plast., vol. 22, no. 7, pp. 1171–1194, 2006. DOI: 10.1016/j.ijplas.2005.06.001.
  • B.F. Wang, Z.L. Liu, X.Y. Wang, and Z.Z. Li, An EBSD investigation on deformation-induced shear bands in a low nickel austenitic stainless steel under controlled shock-loading conditions, Mater Sci Eng A., vol. 610, pp. 301–308, 2014. DOI: 10.1016/j.msea.2014.05.053.
  • U. Andrade, M.A. Meyers, K.S. Vecchio, and A.H. Chokshi, Dynamic recrystallization in high-strain, high-strain-rate plastic deformation of copper, Acta Metall. Mater., vol. 42, no. 9, pp. 3183–3195, 1994. DOI: 10.1016/0956-7151(94)90417-0.
  • F.P. Yuan, X.D. Bian, P. Jiang, M.X. Yang, and X. Wu, Dynamic shear response and evolution mechanisms of adiabatic shear band in an ultrafine-grained austenite–ferrite duplex steel, Mech. Mater., vol. 89, pp. 47–58, 2015. DOI: 10.1016/j.mechmat.2015.06.004.
  • Q. Xue and G.T. Gray, Development of adiabatic shear bands in annealed 316L stainless steel: Part I. Correlation between evolving microstructure and mechanical behavior, Metall. Mat. Trans. A., vol. 37, no. 8, pp. 2435–2446, 2006. DOI: 10.1007/BF02586217.
  • J. Eirs, P. Verleysen, J. Degrieck, and F. Coghe, The use of hat-shaped specimens to study the high strain rate shear behaviour of Ti–6Al–4V, Int. J. Impact Eng., vol. 37, no. 6, pp. 703–714, 2010. DOI: 10.1016/j.ijimpeng.2009.08.002.
  • F.P. Yuan, P. Jiang, and X.L. Wu, Annealing effect on the evolution of adiabatic shear band under dynamic shear loading in ultra-fine-grained iron, Int. J. Impact Eng., vol. 50, pp. 1–8, 2012. DOI: 10.1016/j.ijimpeng.2012.07.001.
  • J.S. Weaver, V. Livescu, and N.A. Mara, A comparison of adiabatic shear bands in wrought and additively manufactured 316L stainless steel using nanoindentation and electron backscatter diffraction, J. Mater. Sci., vol. 55, no. 4, pp. 1738–1752, 2020. DOI: 10.1007/s10853-019-03994-8.
  • J.R. Li, J.L. Yu, and Z.G. Wei, Influence of specimen geometry on adiabatic shear instability of tungsten heavy alloys, Int J Impact Eng., vol. 28, no. 3, pp. 303–314, 2003. DOI: 10.1016/S0734-743X(02)00022-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.