212
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Calibration of the length scale parameter for the stress-driven nonlocal elasticity model from quasi-static and dynamic experiments

, &
Pages 3518-3524 | Received 10 May 2022, Accepted 10 May 2022, Published online: 25 May 2022

References

  • A.C. Eringen and D.G.B. Edelen, On nonlocal elasticity, Int. J. Eng. Sci., vol. 10, no. 3, pp. 233–248, 1972. DOI: 10.1016/0020-7225(72)90039-0.
  • A.C. Eringen, Linear theory of nonlocal elasticity and dispersion of plane waves, Int. J. Eng. Sci., vol. 10, no. 5, pp. 425–435, 1972. DOI: 10.1016/0020-7225(72)90050-X.
  • A.C. Eringen, Screw dislocation in non-local elasticity, J. Phys. D: Appl. Phys., vol. 10, no. 5, pp. 671–678, 1977. DOI: 10.1088/0022-3727/10/5/009.
  • A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys., vol. 54, no. 9, pp. 4703–4710, 1983. DOI: 10.1063/1.332803.
  • A.C. Eringen, Nonlocal polar elastic continua, Int. J. Eng. Sci., vol. 10, no. 1, pp. 1–16, 1972. DOI: 10.1016/0020-7225(72)90070-5.
  • J.N. Reddy, Nonlocal theories for bending, buckling and vibration of beams, Int. J. Eng. Sci., vol. 45, no. 28, pp. 288–307, 2007. DOI: 10.1016/j.ijengsci.2007.04.004.
  • K. Preethi, P. Raghu, A. Rajagopal, and J.N. Reddy, Nonlocal nonlinear bending and free vibration analysis of a rotating laminated nano cantilever beam, Mech. Adv. Mater. Struct., vol. 25, no. 5, pp. 439–450, 2018. DOI: 10.1080/15376494.2016.1278062.
  • C. Liu, L.-L. Ke, J. Yang, S. Kitipornchai, and Y.-S. Wang, Nonlinear vibration of piezoelectric nanoplates using nonlocal Mindlin plate theory, Mech. Adv. Mater. Struct., vol. 25, no. 1516, pp. 1252–1264, 2018. DOI: 10.1080/15376494.2016.1149648.
  • S.K. Jalali, Does vibration amplitude influence the evaluation of nonlocal small scale parameter of single layered graphene sheets?, Mech. Adv. Mater. Struct., vol. 27, no. 6, pp. 493–412, 2020. DOI: 10.1080/15376494.2018.1482035.
  • F. Ebrahimi and M. Karimiasl, Nonlocal and surface effects on the buckling behavior of flexoelectric sandwich nanobeams, Mech. Adv. Mater. Struct., vol. 25, no. 11, pp. 943–952, 2018. DOI: 10.1080/15376494.2017.1329468.
  • A. Czekanski and V.V. Zozulya, Vibration analysis of nonlocal beams using higher-order theory and comparison with classical models, Mech. Adv. Mater. Struct., vol. 28, no. 12, pp. 1293–1217, 2021. DOI: 10.1080/15376494.2019.1665761.
  • R. Artan and A. Tepe, Nonlocal effects in curved single-walled carbon nanotubes, Mech. Adv. Mater. Struct., vol. 18, no. 5, pp. 347–351, 2011. DOI: 10.1080/15376494.2010.516885.
  • M.A. Eltaher, M.E. Khater, and S.A. Emam, A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams, Appl. Math. Modell., vol. 40, no. 56, pp. 4109–4128, 2016. DOI: 10.1016/j.apm.2015.11.026.
  • M. Rezaiee-Pajand and N. Rajabzadeh-Safaei, Nonlocal static analysis of a functionally graded material curved nanobeam, Mech. Adv. Mater. Struct., vol. 25, no. 7, pp. 539–547, 2018. DOI: 10.1080/15376494.2017.1285463.
  • C. Li and T.-W. Chou, Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces, Compos. Sci. Technol., vol. 63, no. 11, pp. 1517–1524, 2003. DOI: 10.1016/S0266-3538(03)00072-1.
  • S. Iijima, C. Brabec, A. Maiti, and J. Bernholc, Structural flexibility of carbon nanotubes, J. Chem. Phys., vol. 104, no. 5, pp. 2089–2092, 1996. DOI: 10.1063/1.470966.
  • C. Li, L. Yao, W. Chen, and S. Li, Comments on nonlocal effects in nano-cantilever beams, Int. J. Eng. Sci., vol. 87, pp. 47–57, 2015. DOI: 10.1016/j.ijengsci.2014.11.006.
  • J. Fernández-Sáez, R. Zaera, J.A. Loya, and J.N. Reddy, Bending of Euler–Bernoulli beams using Eringen’s integral formulation: A paradox resolved, Int. J. Eng. Sci., vol. 99, pp. 107–116, 2016. DOI: 10.1016/j.ijengsci.2015.10.013.
  • N. Challamel and C.M. Wang, The small length scale effect for a non-local cantilever beam: A paradox solved, Nanotechnology, vol. 19, no. 34, pp. 345703, 2008. DOI: 10.1088/0957-4484/19/34/345703.
  • G. Romano, R. Barretta, M. Diaco, and F. Marotti de Sciarra, Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams, Int. J. Mech. Sci., vol. 121, pp. 151–156, 2017. DOI: 10.1016/j.ijmecsci.2016.10.036.
  • G. Romano and R. Barretta, Nonlocal elasticity in nanobeams: The stress-driven integral model, Int. J. Eng. Sci., vol. 115, pp. 14–27, 2017. DOI: 10.1016/j.ijengsci.2017.03.002.
  • A. Caporale, H. Darban, and R. Luciano, Nonlocal strain and stress gradient elasticity of Timoshenko nano-beams with loading discontinuities, Int. J. Eng. Sci., vol. 173, pp. 103620, 2022. DOI: 10.1016/j.ijengsci.2021.103620.
  • A. Caporale, H. Darban, and R. Luciano, Exact closed-form solutions for nonlocal beams with loading discontinuities, Mech. Adv. Mater. Struct., vol. 29, no. 5, pp. 694–704, 2022. DOI: 10.1080/15376494.2020.1787565.
  • H. Darban, A. Caporale, and R. Luciano, Nonlocal layerwise formulation for bending of multilayered/functionally graded nanobeams featuring weak bonding, Eur. J. Mech. A/Solids, vol. 86, pp. 104193, 2021. DOI: 10.1016/j.euromechsol.2020.104193.
  • H. Darban, F. Fabbrocino, L. Feo, and R. Luciano, Size-dependent buckling analysis of nanobeams resting on two-parameter elastic foundation through stress-driven nonlocal elasticity model, Mech. Adv. Mater. Struct., vol. 28, no. 23, pp. 2408–2416, 2021. DOI: 10.1080/15376494.2020.1739357.
  • H. Darban, F. Fabbrocino, and R. Luciano, Size-dependent linear elastic fracture of nanobeams, Int. J. Eng. Sci., vol. 157, pp. 103381, 2020. DOI: 10.1016/j.ijengsci.2020.103381.
  • H. Darban, R. Luciano, A. Caporale, and F. Fabbrocino, Higher modes of buckling in shear deformable nanobeams, Int. J. Eng. Sci., vol. 154, pp. 103338, 2020. DOI: 10.1016/j.ijengsci.2020.103338.
  • F. Fabbrocino, H. Darban, and R. Luciano, Nonlocal layerwise formulation for interfacial tractions in layered nanobeams, Mech. Res. Commun., vol. 109, pp. 103595, 2020. DOI: 10.1016/j.mechrescom.2020.103595.
  • R. Luciano, H. Darban, C. Bartolomeo, F. Fabbrocino, and D. Scorza, Free flexural vibrations of nanobeams with non-classical boundary conditions using stress-driven nonlocal model, Mech. Res. Commun., vol. 107, pp. 103536, 2020. DOI: 10.1016/j.mechrescom.2020.103536.
  • S. Vantadori, R. Luciano, D. Scorza, and H. Darban, Fracture analysis of nanobeams based on the stress-driven nonlocal theory of elasticity, Mech. Adv. Mater. Struct., (article in press), 2020, p. 1–10. DOI: 10.1080/15376494.2020.1846231
  • R. Luciano, A. Caporale, H. Darban, and C. Bartolomeo, Variational approaches for bending and buckling of non-local stress-driven Timoshenko nano-beams for smart materials, Mech. Res. Commun., vol. 103, pp. 103470, 2020. DOI: 10.1016/j.mechrescom.2019.103470.
  • R. Barretta, S.A. Fazelzadeh, L. Feo, E. Ghavanloo, and R. Luciano, Nonlocal inflected nano-beams: A stress-driven approach of bi-Helmholtz type, Compos. Struct., vol. 200, pp. 239–245, 2018. DOI: 10.1016/j.compstruct.2018.04.072.
  • R. Barretta, F. Fabbrocino, R. Luciano, F. Marotti de Sciarra, and G. Ruta, Buckling loads of nano-beams in stress-driven nonlocal elasticity, Mech. Adv. Mater. Struct., vol. 27, no. 11, pp. 869–867, 2020. DOI: 10.1080/15376494.2018.1501523.
  • M.F. Oskouie, R. Ansari, and H. Rouhi, Bending of Euler–Bernoulli nanobeams based on the strain-driven and stress-driven nonlocal integral models: A numerical approach, Acta Mech. Sin., vol. 34, no. 5, pp. 871–882, 2018. DOI: 10.1007/s10409-018-0757-0.
  • R. Barretta, R. Luciano, F. Marotti de Sciarra, and G. Ruta, Stress-driven nonlocal integral model for Timoshenko elastic nano-beams, Eur. J. Mech. A/Solids, vol. 72, pp. 275–286, 2018. DOI: 10.1016/j.euromechsol.2018.04.012.
  • R. Barretta, S.A. Faghidian, and R. Luciano, Longitudinal vibrations of nano-rods by stress-driven integral elasticity, Mech. Adv. Mater. Struct., vol. 26, no. 15, pp. 1307–1315, 2019. DOI: 10.1080/15376494.2018.1432806.
  • A. Apuzzo, R. Barretta, R. Luciano, F. Marotti de Sciarra, and R. Penna, Free vibrations of Bernoulli-Euler nano-beams by the stress-driven nonlocal integral model, Compos. B: Eng., vol. 123, pp. 105–111, 2017. DOI: 10.1016/j.compositesb.2017.03.057.
  • W.H. Duan, C.M. Wang, and Y.Y. Zhang, Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics, J. Appl. Phys., vol. 101, no. 2, pp. 024305, 2007. DOI: 10.1063/1.2423140.
  • L.Y. Huang, Q. Han, and Y.J. Liang, Calibration of nonlocal scale effect parameter for bending single-layered graphene sheet under molecular dynamics, NANO., vol. 07, no. 05, pp. 1250033, 2012. DOI: 10.1142/S1793292012500336.
  • S. Narendar, D. Roy Mahapatra, and S. Gopalakrishnan, Prediction of nonlocal scaling parameter for armchair and zigzag single-walled carbon nanotubes based on molecular structural mechanics, nonlocal elasticity and wave propagation, Int. J. Eng. Sci., vol. 49, no. 6, pp. 509–522, 2011. DOI: 10.1016/j.ijengsci.2011.01.002.
  • Y.Y. Zhang, C.M. Wang, W.H. Duan, Y. Xiang, and Z. Zong, Assessment of continuum mechanics models in predicting buckling strains of single-walled carbon nanotubes, Nanotechnology, vol. 20, no. 39, pp. 395707, 2009. DOI: 10.1088/0957-4484/20/39/395707.
  • L. Wang and H. Hu, Flexural wave propagation in single-walled carbon nanotubes, Phys. Rev. B, vol. 71, no. 19, pp. 195412, 2005. DOI: 10.1103/PhysRevB.71.195412.
  • N. Challamel, J. Lerbet, C.M. Wang, and Z. Zhang, Analytical length scale calibration of nonlocal continuum from a microstructured buckling model, Z. Angew. Math. Mech., vol. 94, no. 5, pp. 402–413, 2014. DOI: 10.1002/zamm.201200130.
  • A.R. Hadjesfandiari, E.P. Furlani, A. Hajesfandiari, and G.F. Dargush, Size effects in vibrating silicon crystal microbeams, J. Eng. Mech., vol. 145, no. 2, pp. 04018136, 2019. DOI: 10.1061/(ASCE)EM.1943-7889.0001565.
  • Z. Li, Y. He, J. Lei, S. Guo, D. Liu, and L. Wang, A standard experimental method for determining the material length scale based on modified couple stress theory, Int. J. Mech. Sci., vol. 141, pp. 198–205, 2018. DOI: 10.1016/j.ijmecsci.2018.03.035.
  • J. Lei, Y. He, S. Guo, Z. Li, and D. Liu, Size-dependent vibration of nickel cantilever microbeams: Experiment and gradient elasticity, AIP Adv., vol. 6, no. 10, pp. 105202, 2016. DOI: 10.1063/1.4964660.
  • D.C.C. Lam, F. Yang, A.C.M. Chong, J. Wang, and P. Tong, Experiments and theory in strain gradient elasticity, J. Mech. Phys. Solids, vol. 51, no. 8, pp. 1477–1508, 2003. DOI: 10.1016/S0022-5096(03)00053-X.
  • C. Tang and G. Alici, Evaluation of length-scale effects for mechanical behaviour of micro- and nanocantilevers: II. Experimental verification of deflection models using atomic force microscopy, J. Phys. D: Appl. Phys., vol. 44, no. 33, pp. 335502, 2011. DOI: 10.1088/0022-3727/44/33/335502.
  • A.K. Gupta, P.R. Nair, D. Akin, M.R. Ladisch, S. Broyles, M.A. Alam, and R. Bashir, Anomalous resonance in a nanomechanical biosensor, Proc. Natl. Acad. Sci. USA, vol. 103, no. 36, pp. 13362–13367, 2006. DOI: 10.1073/pnas.0602022103.
  • S. Wolf and R. Tauber, Vol. 1 of Process Technology, Silicon Processing for the VLSI Era, 647, Lattice, Sunset Beach, CA, 1986.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.