504
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Topology optimization of anisotropy hierarchical honeycomb acoustic metamaterials for extreme multi-broad band gaps

ORCID Icon, , , , , & show all
Pages 3540-3552 | Received 06 Jan 2022, Accepted 14 May 2022, Published online: 23 May 2022

References

  • Y. Xiong, S. Wen, F. Li, and C. Zhang, Enhancement of the band-gap characteristics of hierarchical periodic elastic metamaterial beams, Waves Random Complex Media, vol. 2020, pp. 1–17, 2020. DOI: 10.1080/17455030.2020.1840657.
  • Z. Wu, F. Li, and C. Zhang, Band-gap analysis of a novel lattice with a hierarchical periodicity using the spectral element method, J. Sound Vib., vol. 421, pp. 246–260, 2018. DOI: 10.1016/j.jsv.2018.02.009.
  • V. F. Dal Poggetto, F. Bosia, M. Miniaci, and N. M. Pugno, Band gap enhancement in periodic frames using hierarchical structures, Int. J. Solids Struct., vol. 216, pp. 68–82, 2021. DOI: 10.1016/j.ijsolstr.2021.01.003.
  • H. Sun, Y. Fei, and G. Hao, Acoustic metamaterial with negative parameter, Eur. J. Neurosci., vol. 25, pp.618–628, 2014. DOI: 10.1002/adma.201706348.
  • A. Sridhar, L. Liu, V. G. Kouznetsova, and M. G. D. Geers, Homogenized enriched continuum analysis of acoustic metamaterials with negative stiffness and double negative effects, J. Mech. Phys. Solids., vol. 119, pp. 104–117, 2018. DOI: 10.1016/j.jmps.2018.06.015.
  • H. H. Huang, C. T. Sun, and G. L. Huang, On the negative effective mass density in acoustic metamaterials, Int. J. Eng. Sci., vol. 47, no. 4, pp. 610–617, 2009. DOI: 10.1016/j.ijengsci.2008.12.007.
  • A. Khelif, A. Choujaa, S. Benchabane, B. Djafari-Rouhani, and V. Laude, Guiding and bending of acoustic waves in highly confined phononic crystals waveguides, Appl. Phys. Lett., vol. 84, no. 22, pp. 4400–4402, 2004. DOI: 10.1063/1.1757642.
  • Y. Chen and L. Wang, Multiband wave filtering and waveguiding in bio-inspired hierarchical composites, Extr. Mech. Lett., vol. 5, pp. 18–24, 2015. DOI: 10.1016/j.eml.2015.09.002.
  • T.-C. Wu, T.-T. Wu, and J.-C. Hsu, Waveguiding and frequency selection of Lamb waves in a plate with a periodic stubbed surface, Phys. Rev. B., vol. 79, no. 10, pp. 1–6, 2009. DOI: 10.1103/PhysRevB.79.104306.
  • A. Khelif, P. A. Deymier, B. Djafari-Rouhani, J. O. Vasseur, and L. Dobrzynski, Two-dimensional phononic crystal with tunable narrow pass band: application to a waveguide with selective frequency, J. Appl. Phys., vol. 94, pp. 1038–1311, 2003. DOI: 10.1063/1.1557776.
  • M. Kafesaki, M. M. Sigalas, and N. Gaicía, Frequency modulation in the transmittivity of wave guides in elastic-wave band-gap materials, Phys Rev Lett., vol. 85, no. 19, pp. 4044–4047, 2000. DOI: 10.1103/PhysRevLett.85.4044.
  • P. Zhang, and A. C. To, Broadband wave filtering of bioinspired hierarchical phononic crystal, Appl. Phys. Lett., vol. 102, no. 12, pp. 121910, 2013. DOI: 10.1063/1.4799171.
  • Y. Chen, F. Qian, L. Zuo, F. Scarpa, and L. Wang, Broadband and multiple vibration mitigation in lattice metamaterials with sinusoidally-shaped ligaments, Extr. Mech. Lett., vol. 17, pp. 24–32, 2017. DOI: 10.1016/j.eml.2017.09.012.
  • M. M. Sigalas and E. N. Economous, Elastic and acoustic wave band structure, J. Sound Vib., vol. 158, no. 2, pp. 377–382, 1992. DOI: 10.1016/0022-460X(92)90059-7.
  • M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, Acoustic band structure of periodic elastic composites, Phys. Rev. Lett., vol. 71, no. 13, pp. 2022–2025, 1993. DOI: 10.1103/PhysRevLett.71.2022.
  • Z. Liu, et al. Locally resonant sonic materials, Science, vol. 289, no. 5485, pp. 1734–1736, 2000. DOI: 10.1126/science.289.5485.1734.
  • R. Lakes, Materials with structural hierarchy, Nature, vol. 361, no. 6412, pp. 511–515, 1993. DOI: 10.1038/361511a0.
  • H.-K. Zhang, W.-J. Wu, Z. Kang, and X.-Q. Feng, Topology optimization method for the design of bioinspired self-similar hierarchical microstructures – ScienceDirect, Comput. Methods Appl. Mech. Eng., vol. 372, pp. 113399, 2020. DOI: 10.1016/j.cma.2020.113399.
  • Y. Liu, et al., Menger fractal structure with negative refraction and sound tunnelling properties, Mater. Res. Expr, vol. 6, no. 11, pp. 116211–116211, 2019. DOI: 10.1088/2053-1591/ab4c57.
  • K. Wang, Y. Liu, and T. Liang, Band structures in Sierpinski triangle fractal porous phononic crystals, Phys. B: Condens. Matter., vol. 498, pp. 33–42, 2016. DOI: 10.1016/j.physb.2016.06.018.
  • K. Billon, et al., Mechanics and band gaps in hierarchical auxetic rectangular perforated composite metamaterials – ScienceDirect, Compos. Struct., vol. 160, pp. 1042–1050, 2017. DOI: 10.1016/j.compstruct.2016.10.121.
  • S. Sepehri, H. Jafari, M. M. Mashhadi, M. R. H. Yazdi, and M. M. S. Fakhrabadi, Study of tunable locally resonant metamaterials: effects of spider-web and snowflake hierarchies, Int. J. Solids Struct., vol. 204–205, pp. 81–95, 2020. DOI: 10.1016/j.ijsolstr.2020.08.014.
  • L. Zhao, Q. Zheng, H. Fan, and F. Jin, Hierarchical composite honeycombs, Mater. Des., vol. 40, pp. 124–129, 2012. DOI: 10.1016/j.matdes.2012.03.009.
  • A. Ajdari, B. H. Jahromi, J. Papadopoulos, H. Nayeb-Hashemi, and A. Vaziri, Hierarchical honeycombs with tailorable properties, Int. J. Solids Struct., vol. 49, nos. 11–12, pp. 1413–1419, 2012. DOI: 10.1016/j.ijsolstr.2012.02.029.
  • Y. F. Li, X. Huang, F. Meng, and S. Zhou, Evolutionary topological design for phononic BGs crystals, Struct. Multidisc. Optim., vol. 54, no. 3, pp. 595–617, 2016. DOI: 10.1007/s00158-016-1424-3.
  • O. Sigmund and J. Søndergaard, Systematic design of phononic band-gap materials and structures by topology optimization, Philos. Trans. A: Math. Phys. Eng. Sci., vol. 361, no. 1806, pp. 1001–1019, 2003. DOI: 10.1098/rsta.2003.1177.
  • Z. Zhang, Y. Fan Li, F. Meng, and X. Huang, Topological design of phononic BGs crystals with sixfold symmetric hexagonal lattice, Comput. Mater. Sci., vol. 139, pp. 97–105, 2017. DOI: 10.1016/j.commatsci.2017.07.037.
  • Y. Liu, X-z. Sun, and S-t. Chen , Band gap structures in two-dimensional super porous phononic crystals, Ultrasonics, vol. 53, no. 2, pp. 518–524, 2013. DOI: 10.1016/j.ultras.2012.09.006.
  • J.-Y. Rho, L. Kuhn-Spearing, and P. Zioupos, Mechanical properties and the hierarchical structure of bone, Med. Eng. Phys., vol. 20, no. 2, pp. 92–102, 1998. DOI: 10.1016/S1350-4533(98)00007-1.
  • Y. Chen and L. Wang, Harnessing structural hierarchy to design stiff and lightweight phononic crystals, Extr. Mech. Lett., vol. 9, pp. 91–96, 2016. DOI: 10.1016/j.eml.2016.05.009.
  • D. Mousanezhad, et al., Hierarchical honeycomb auxetic metamaterials, Sci Rep., vol. 5, pp. 18306, 2015. DOI: 10.1038/srep18306.
  • D. Mousanezhad, S. Babaee, R. Ghosh, E. Mahdi, K. Bertoldi, and A. Vaziri, Honeycomb phononic crystals with self-similar hierarchy, Phys. Rev. B., vol. 92, no. 10, pp. 104304, 2015. DOI: 10.1103/PhysRevB.92.104304.
  • P. Sun, Z. Zhang, H. Guo, N. Liu, and Y. Wang, Hierarchical square honeycomb metamaterials with low-frequency broad bandgaps and flat energy bands characteristics, J. Appl. Phys., vol. 128, no. 23, pp. 235102, 2020. DOI: 10.1063/5.0014846.
  • B. Zla, C. Zwab, and B. Xwa, Bending behavior of sandwich beam with tailored hierarchical honeycomb cores, Thin-Walled Struct., vol. 157, pp. 107001, 2020. DOI: 10.1016/j.tws.2020.107001.
  • Z. W. Wang, Z. G. Li, C. Shi, and W. Zhou, Theoretical and numerical analysis of the folding mechanism of vertex-based hierarchical honeycomb structure, Mech. Adv. Mater. Struct., vol. 27, no. 10, pp. 789–799, 2020. DOI: 10.1080/15376494.2019.1665760.
  • L. Wang and H. T. Liu, Parameter optimization of bidirectional re-entrant auxetic honeycomb metamaterial based on genetic algorithm, Compos. Struct., vol. 267, pp. 113915, 2021. DOI: 10.1016/j.compstruct.2021.113915.
  • M. R. An, L. Wang, H. T. Liu, and F. G. Ren, In-plane crushing response of a novel bidirectional re-entrant honeycomb with two plateau stress regions, Thin Wall Struct., vol. 170, pp. 108503, 2022. DOI: 10.1016/j.tws.2021.108530.
  • F. G. Ren, L. Wang, and H. T. Liu, Low frequency and broadband vibration attenuation of a novel lightweight bidirectional re-entrant lattice metamaterial, Mater. Lett., vol. 299, pp. 130133, 2021. DOI: 10.1016/j.matlet.2021.130133.
  • H. Ding and Z. Huang, A new theory for the topological structure analysis of kinematic chains and its applications, Mech. Mach. Theory., vol. 42, no. 10, pp. 1264–1279, 2007. DOI: 10.1016/j.mechmachtheory.2006.11.007.
  • A. Khelif, B. Aoubiza, S. Mohammadi, A. Adibi, and V. Laude , Complete band gaps in two-dimensional phononic crystal slabs, Phys. Rev. E: Stat. Nonlin. Soft Matter. Phys., vol. 74, no. 4 Pt 2, pp. 046610, 2006. DOI: 10.1103/PhysRevE.74.046610.
  • K. D. Jong, Analysis of the behavior of a class of genetic adaptive systems, Ph.D. thesis, University of Michigan, 1975. DOI: hdl.handle.net/2027.42/4507
  • Q. Cheng, H. Guo, T. Yuan, P. Sun, F. Guo, and Y. Wang, Topological design of square lattice structure for broad and multiple BGs in low-frequency range, Extr. Mech. Lett., vol. 35, pp. 100632, 2020. DOI: 10.1016/j.eml.2020.100632.
  • J. Shim, P. Wang, and K. Bertoldi, Harnessing instability-induced pattern transformation to design tunable phononic crystals, Int. J. Solids Struct., vol. 58, pp. 52–61, 2015. DOI: 10.1016/j.ijsolstr.2014.12.018.
  • H.-W. Dong, X.-X. Su, Y.-S. Wang, and C. Zhang, Topological optimization of two-dimensional phononic crystals based on the finite element method and genetic algorithm, Struct. Multidisc. Optim., vol. 50, no. 4, pp. 593–604, 2014. DOI: 10.1007/s00158-014-1070-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.