582
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Vibro-acoustic analysis of the sound transmission through aerospace composite structures

, & ORCID Icon
Pages 3912-3922 | Received 26 Dec 2021, Accepted 29 May 2022, Published online: 14 Jun 2022

References

  • D. Zenkert, The handbook of sandwich construction, Eng. Mater. Adv. Serv., Birmingham, UK, 1997. ISBN 978-0947817961.
  • H.G. Allen, Analysis and Design of Structural Sandwich Panels: The Commonwealth and International Library: Structures and Solid Body Mechanics Division, Elsevier, 2013.
  • C. Kassapoglou, Design and Analysis of Composite Structures: With Applications to Aerospace Structures, Wiley, 2013. DOI: 10.1002/9781118536933
  • L. Wendler and V.G. Grigoryan, Acoustic interface waves in sandwich structures, Surf. Sci., vol. 206, no. 12, pp. 203–224, 1988. DOI: 10.1016/0039-6028(88)90022-2.
  • S. Slimane, S. Kebdani, A. Boudjemai, and A. Slimane, Effect of position of tension-loaded inserts on honeycomb panels used for space applications, Int. J. Interact. Des. Manuf., vol. 12, no. 2, pp. 393–408, 2018. DOI: 10.1007/s12008-017-0383-2.
  • Z.H. Wen, D.W. Wang, and L. Ma, Sound transmission of composite sandwich panel with face-centered cubic core, Mech. Adv. Mater. Struct., vol. 28, no. 16, pp. 1663–1676, 2021. DOI: 10.1080/15376494.2019.1700433.
  • A. Nilsson, S. Baro, and E.A. Piana, Vibro-acoustic properties of sandwich structures, Appl. Acoust., vol. 139, pp. 259–266, 2018. DOI: 10.1016/j.apacoust.2018.04.039.
  • C. Kassapoglou, Design and Analysis of Composite Structures: With Applications to Aerospace Structures, Wiley, 2013. DOI: 10.1002/9781118536933
  • S.A. Slimane, et al., Hypervelocity impact on honeycomb structure reinforced with bi-layer ceramic/aluminum facesheets used for spacecraft shielding, Mech. Adv. Mater. Struct., pp. 1–19, 2021. DOI: 10.1080/15376494.2021.1931991.
  • G. Kurtze and B. Watters, New wall design for high transmission loss or high damping, J. Acoust. Soc. Am., vol. 31, no. 6, pp. 739–748, 1959. DOI: 10.1121/1.1907780.
  • E. Davis, Designing honeycomb panels for noise control, 5th AIAA/CEAS Aeroacoustics Conference and Exhibit, pp.1917, 1999. DOI: 10.2514/6.1999-1917.
  • C.L. Dym and M.A. Lang, Transmission of sound through sandwich panels, J. Acoust. Soc. Am., vol. 56, no. 5, pp. 1523–1532, 1974. DOI: 10.1121/1.1903474.
  • C.L. Dym and D. Lang, Transmission loss of damped asymmetric sandwich panels with orthotropic cores, J. Sound Vib., vol. 88, no. 3, pp. 299–319, 1983. DOI: 10.1016/0022-460X(83)90690-9.
  • J. Moore and R. Lyon, Sound transmission loss characteristics of sandwich panel constructions, J. Acoust. Soc. Am., vol. 89, no. 2, pp. 777–791, 1991. DOI: 10.1121/1.1894638.
  • R. Ford, P. Lord, and A. Walker, Sound transmission through sandwich constructions, J. Sound Vib., vol. 5, no. 1, pp. 9–21, 1967. DOI: 10.1016/0022-460X(67)90173-3.
  • N. Chandra, S. Raja, and K.N. Gopal, Vibro-acoustic response and sound transmission loss analysis of functionally graded plates, J. Sound Vib., vol. 333, no. 22, pp. 5786–5802, 2014. DOI: 10.1016/j.jsv.2014.06.031.
  • Z. Qian, D. Chang, B. Liu, and K. Liu, Prediction of sound transmission loss for finite sandwich panels based on a test procedure on beam elements, J. Vib. Acoust., vol. 135, no. 6, pp. 061005, 2013. DOI: 10.1115/1.4023842.
  • R. Zhou and M.J. Crocker, Sound transmission characteristics of asymmetric sandwich panels, J. Vib. Acoust., vol. 132, no. 3, pp. 031012, 2010. DOI: 10.1115/1.4000786.
  • T. Fu, Z. Chen, H. Yu, C. Li, and X. Liu, An analytical study of the vibroacoustic response of a ribbed plate, Aerosp. Sci. Technol., vol. 73, pp. 96–104, 2018. DOI: 10.1016/j.ast.2017.11.047.
  • T. Fu, Z. Chen, H. Yu, X. Zhu, and Y. Zhao, Sound transmission loss behavior of sandwich panel with different truss cores under external mean airflow, Aerosp. Sci. Technol., vol. 86, pp. 714–723, 2019. DOI: 10.1016/j.ast.2019.01.050.
  • X. Li, K. Yu, R. Zhao, J. Han, and H. Song, Sound transmission loss of composite and sandwich panels in thermal environment, Compos. Part B: Eng., vol. 133, pp. 1–14, 2018. DOI: 10.1016/j.compositesb.2017.09.023.
  • X. Li, K. Yu, and R. Zhao, Vibro-acoustic response of a clamped rectangular sandwich panel in thermal environment, Appl. Acoust., vol. 132, pp. 82–96, 2018. DOI: 10.1016/j.apacoust.2017.11.010.
  • C. Shen, H. Zhang, and Y. Liu, Analytical modelling of sound transmission loss across finite clamped triple-wall sandwich panels in the presence of external mean flow, Appl. Math. Modell., vol. 73, pp. 146–165, 2019. DOI: 10.1016/j.apm.2019.03.043.
  • X.-M. Xu, Y.-P. Jiang, H.-P. Lee, and N. Chen, Sound insulation performance optimization of lightweight sandwich panels, J. Vibroeng., vol. 18, no. 4, pp. 2574–2586, 2016. DOI: 10.21595/jve.2016.16603.
  • P. Thamburaj and J. Sun, Optimization of anisotropic sandwich beams for higher sound transmission loss, J. Sound Vib., vol. 254, no. 1, pp. 23–36, 2002. DOI: 10.1006/jsvi.2001.4059.
  • M. Ruzzene, Vibration and sound radiation of sandwich beams with honeycomb truss core, J. Sound Vib., vol. 277, no. 45, pp. 741–763, 2004. DOI: 10.1016/j.jsv.2003.09.026.
  • A. Boudjemai and S.A. Slimane, Payload Fill Effect and Parameters Optimization of a Launch Vehicle Fairing Using GSA Algorithm, In 2019 9th International Conference on Recent Advances in Space Technologies (RAST), pp. 53–58, June, IEEE, 2019. DOI: 10.1109/RAST.2019.8767776.
  • D. Griese, J.D. Summers, and L. Thompson, The effect of honeycomb core geometry on the sound transmission performance of sandwich panels, J. Vib. Acoust., vol. 137, no. 2, pp. 021011, 2015. DOI: 10.1115/1.4029043.
  • M. Cinefra, M.C. Moruzzi, S. Bagassi, E. Zappino, and E. Carrera, Vibro-acoustic analysis of composite plate-cavity systems via CUF finite elements, Compos. Struct., vol. 259, pp. 113428, 2021. DOI: 10.1016/j.compstruct.2020.113428.
  • M. Cinefra, E. Zappino, E. Carrera, and S. De Rosa, Fully coupled vibro-acoustic analysis of multilayered plates by cuf nite elements, 3rd Euro-Mediterranean Conference on Structural Dynamics and Vibroacoustics, Medyna, Italy, 2020.
  • E. Carrera, M. Cinefra, M. Petrolo, and E. Zappino, Finite Element Analysis of Structures through Unified Formulation, Wiley, 2014. DOI: 10.1002/9781118536643.
  • R. Galgalikar and L.L. Thompson, Design optimization of honeycomb core sandwich panels for maximum sound transmission loss, J. Vib. Acoust., vol. 138, no. 5, pp. 051005, 2016. DOI: 10.1115/1.4033459.
  • M. Arunkumar, J. Pitchaimani, K. Gangadharan, and M.L. Babu, Sound transmission loss characteristics of sandwich aircraft panels: Influence of nature of core, J. Sandwi. Struct. Mater., vol. 19, no. 1, pp. 26–48, 2017. DOI: 10.1177/1099636216652580.
  • M. Arunkumar, J. Pitchaimani, K. Gangadharan, and M.L. Babu, Influence of nature of core on vibro acoustic behavior of sandwich aerospace structures, Aerosp. Sci. Technol., vol. 56, pp. 155–167, 2016. DOI: 10.1016/j.ast.2016.07.009.
  • M. Arunkumar, J. Pitchaimani, K. Gangadharan, and M. Leninbabu, Vibro-acoustic response and sound transmission loss characteristics of truss core sandwich panel filled with foam, Aerosp. Sci. Technol., vol. 78, pp. 1–11, 2018. DOI: 10.1016/j.ast.2018.03.029.
  • A. Slimane, S. Slimane, S. Kebdani, M. Chaib, S. Dahmane, B. Bouchouicha, … and S. Adjim, Parameters effects analysis of rotary ultrasonic machining on carbon fiber reinforced plastic (CFRP) composite using an interactive RSM Method, Int. J. Interact. Des. Manuf., vol. 13, no. 2, pp. 521–529, 2019. DOI: 10.1007/s12008-018-0518-0.
  • M. Chaib, A. Slimane, S. A. Slimane, A. Ziadi, and B. Bouchouicha, Optimization of ultimate tensile strength with DOE approach for application FSW process in the aluminum alloys AA6061-T651 & AA7075-T651, Frattura ed Integrità Strutturale., vol. 15, no. 57, pp. 169–181, 2021. DOI: 10.3221/IGF-ESIS.57.14.
  • M. Arunkumar, J. Pitchaimani, K. Gangadharan, and M. Leninbabu, Effect of core topology on vibro-acoustic characteristics of truss core sandwich panels, Proc. Eng., vol. 144, pp. 1397–1402, 2016. DOI: 10.1016/j.proeng.2016.05.170.
  • M. Arunkumar, M. Jagadeesh, J. Pitchaimani, K. Gangadharan, and M. L. Babu, Sound radiation and transmission loss characteristics of a honeycomb sandwich panel with composite facings: Effect of inherent material damping, J. Sound Vib., vol. 383, pp. 221–232, 2016. DOI: 10.1016/j.jsv.2016.07.028.
  • H. Yang, H. Li, and H. Zheng, A structural-acoustic optimization of two-dimensional sandwich plates with corrugated cores, J. Vib. Control., vol. 23, no. 18, pp. 3007–3022, 2017. DOI: 10.1177/1077546315625558.
  • D.-W. Wang and L. Ma, Sound transmission through composite sandwich plate with pyramidal truss cores, Compos. Struct., vol. 164, pp. 104–117, 2017. DOI: 10.1016/j.compstruct.2016.11.088.
  • Y. Zhang, D. Thompson, G. Squicciarini, J. Ryue, X. Xiao, and Z. Wen, Sound transmission loss properties of truss core extruded panels, Appl. Acoust., vol. 131, pp. 134–153, 2018. DOI: 10.1016/j.apacoust.2017.10.021.
  • Y. Yang, et al., Acoustic properties of glass fiber assembly-filled honeycomb sandwich panels, Compos. Part B: Eng., vol. 96, pp. 281–286, 2016. DOI: 10.1016/j.compositesb.2016.04.046.
  • N. Sharma, T.R. Mahapatra, S.K. Panda, and P. Katariya, Thermo-acoustic analysis of higher-order shear deformable laminated composite sandwich flat panel, J. Sandw. Struct. Mater., vol. 22, no. 5, pp. 1357–1385, 2020. DOI: 10.1177/1099636218784846.
  • R. Talebitooti, H. Gohari, and M. Zarastvand, Multi objective optimization of sound transmission across laminated composite cylindrical shell lined with porous core investigating non-dominated Sorting Genetic Algorithm, Aerosp. Sci. Technol., vol. 69, pp. 269–280, 2017. DOI: 10.1016/j.ast.2017.06.008.
  • R. Talebitooti, K. Daneshjou, and A. Tarkashvand, Study of imperfect bonding effects on sound transmission loss through functionally graded laminated sandwich cylindrical shells, Int. J. Mech. Sci., vol. 133, pp. 469–483, 2017. DOI: 10.1016/j.ijmecsci.2017.09.001.
  • M. Cinefra, G. D’Amico, A.G. De Miguel, M. Filippi, A. Pagani, and E. Carrera, Efficient numerical evaluation of transmission loss in homogenized acoustic metamaterials for aeronautical application, Appl. Acoust., vol. 164, pp. 107253, 2020. DOI: 10.1016/j.apacoust.2020.107253.
  • M.C. Moruzzi, M. Cinefra, and S. Bagassi, Vibroacoustic analysis of an innovative windowless cabin with metamaterial trim panels in regional turboprops, Mech. Adv. Mater. Struct., vol. 28, no. 14, pp. 1509–1521, 2021. DOI: 10.1080/15376494.2019.1682729.
  • R. Vos and R. Barrett, Mechanics of pressure-adaptive honeycomb and its application to wing morphing, Smart Mater. Struct., vol. 20, no. 9, pp. 094010, 2011. DOI: 10.1088/0964-1726/20/9/094010.
  • J. Ju, B. Ananthasayanam, J.D. Summers, and P. Joseph, Design of cellular shear bands of a non-pneumatic tire-investigation of contact pressure, SAE Int. J. Passeng. Cars – Mech. Syst., vol. 3, no. 1, pp. 598–606, 2010. DOI: 10.4271/2010-01-0768.
  • D. Ruan, G. Lu, B. Wang, and T. Yu, In-plane dynamic crushing of honeycombs—A finite element study, Int. J. Impact Eng., vol. 28, no. 2, pp. 161–182, 2003. DOI: 10.1016/S0734-743X(02)00056-8.
  • S.D. Papka and S. Kyriakides, In-plane compressive response and crushing of honeycomb, J. Mech. Phys. Solids., vol. 42, no. 10, pp. 1499–1532, 1994. DOI: 10.1016/0022-5096(94)90085-X.
  • L.J. Gibson and M.F. Ashby, Cellular Solids: Structure and Properties, Cambridge University Press, UK, 1999. DOI: 10.1017/CBO9781139878326.
  • A. Kolla, J. Ju, J. D. Summers, G. Fadel, and J. C. Ziegert, Design of chiral honeycomb meso-structures for high shear flexure, ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 43–49, 2011. DOI: 10.1115/DETC2010-28557.
  • J. Ju, J.D. Summers, J. Ziegert, and G. Fadel, Design of honeycomb meta-materials for high shear flexure, ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 805–813, 2010. DOI: 10.1115/DETC2009-87730.
  • H. Nakamoto, T. Adachi, and W. Araki, In-plane impact behavior of honeycomb structures filled with linearly arranged inclusions, Int. J. Impact Eng., vol. 36, no. 8, pp. 1019–1026, 2009. DOI: 10.1016/j.ijimpeng.2009.01.004.
  • Z. Zhang and Y. Du, Sound insulation analysis and optimization of anti-symmetrical carbon fiber reinforced polymer composite materials, Appl. Acoust., vol. 120, pp. 34–44, 2017. DOI: 10.1016/j.apacoust.2017.01.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.