248
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Nonlinear unified strength criterion for frozen soil based on homogenization theory

ORCID Icon, ORCID Icon, ORCID Icon &
Pages 4002-4015 | Received 18 Apr 2022, Accepted 04 Jun 2022, Published online: 29 Jun 2022

References

  • N. A. Tsytovich, Translated By C. Q. Zhang, and Y. L. Zhu, The Mechanics of Frozen Ground, Science Press, Beijing, 1985.
  • G. H. Brown, The periglacial environment (second edition), Appl. Geochem., vol. 13, no. 2, pp. 281–282, 1998. DOI: 10.1016/S0883-2927(97)00055-3.
  • M. Qi, F. J. Niu, Z. J. Lin, J. Luo, and M. H. Liu, Comparing frost heave characteristics in cut and embankment sections along a high-speed railway in seasonally frozen ground of northeast china, Cold Regions Sci. Technol., vol. 170, pp. 102921, 2019. DOI: 10.1016/j.coldregions.2019.10292.
  • Z. J. Lin, et al., Characteristics and controlling factors of frost heave in high-speed railway subgrade, northwest china, Cold Regions Sci. Technol., vol. 153, no. SEP, pp. 33–44, 2018. DOI: 10.1016/j.coldregions.2018.05.001.
  • H. Liu, F. J. Niu, Y. H. Niu, J. Xu, and T. H. Wang, Effect of structures and sunny–shady slopes on thermal characteristics of subgrade along the Harbin–Dalian passenger dedicated line in northeast China, Cold Regions Sci. Technol., vol. 123, no. Mar, pp. 14–21, 2016. DOI: 10.1016/j.coldregions.2015.11.007.
  • J. Luo, F. J. Niu, M. H. Liu, Z. J. Lin, and G. A. Yin, Field experimental study on long-term cooling and deformation characteristics of crushed-rock revetment embankment at the Qinghai–Tibet Railway, Appl. Thermal Engin., vol. 139, no. 2018, pp. 256–263, 2018. DOI: 10.1016/j.applthermaleng.2018.04.138.
  • Z. Y. Zhu, et al., Experimental investigation of the dynamic behavior of frozen clay from the Beiluhe subgrade along the QTR, Cold Regions Sci. Technol., vol. 69, no. 1, pp. 91–97, 2011. DOI: 10.1016/j.coldregions.2011.07.007.
  • D. Zhang, Q. M. Li, E. L. Liu, X. X. Liu, G. Zhang, and B. T. Song, Dynamic properties of frozen silty soils with different coarse-grained contents subjected to cyclic triaxial loading, Cold Regions Sci. Technol., vol. 157, pp. 64–85, 2019. DOI: 10.1016/j.coldregions.2018.09.010.
  • Y. L. Chen, M. Wang, S. Xu, L. Q. Chang, and Z. Z. Yin, Tensile and compressive strength tests on artifical frozen soft clay in Shanghai, Chinese J. Geotech. Engin., vol. 31, no. 7, pp. 1046–1051, 2009. DOI: 10.1016/S1874-8651(10)60073-7.
  • L. Ma, J. L. Qi, F. Yu, and X. L. Yao, Experimental study on variability in mechanical properties of a frozen sand as determined in triaxial compression tests, Acta Geotech., vol. 11, no. 1, pp. 61–70, 2016. DOI: 10.1007/s11440-015-0391-y.
  • Q. L. Li, X. Z. Ling, and D. C. Sheng, Elasto-plastic behaviour of frozen soil subjected to long-term low-level repeated loading, Part Ι: experimental investigation, Cold Regions Sci. Technol., vol. 125, no. May, pp. 138–151, 2016. DOI: 10.1016/j.coldregions.2015.11.015.
  • W. Ma, Z. W. Wu, L. X. Zhang, and X. X. Chang, Analyses of process on the strength decrease in frozen soils under high confining pressures, Cold Regions Sci. Technol., vol. 29, no. 1, pp. 1–7, 1999. DOI: 10.1016/S0165-232X(98)00020-2.
  • J. L. Qi, and W. Ma, A new criterion for strength of frozen sand under quick triaxial compression considering effect of confining pressure, Acta Geotech., vol. 2, no. 3, pp. 221–226, 2007. DOI: 10.1007/s11440-007-0034-z.
  • J. F. Labuz, and A. Zang, Mohr-Coulomb failure criterion, Rock Mech Rock Eng., vol. 45, no. 6, pp. 975–979, 2012. DOI: 10.1007/s00603-012-0281-7.
  • G. X. Li, Advanced Soil Mechanics, Tsinghua University Press, Beijing, 2004.
  • P. V. Lade, Modelling the strengths of engineering materials in three dimensions, Mech. Cohes.-Frict. Mater., vol. 2, no. 4, pp. 339–356, 1997. DOI: 10.1002/(SICI)1099-1484(199710)2:4 < 339::AID-CFM36 > 3.0.CO;2.
  • E. Hoek, Strength of jointed rock masses, Géotechnique., vol. 33, no. 3, pp. 187–223, 1983. DOI: 10.1680/geot.1983.33.3.187.
  • H. Matsuoka, and D. Sun, Extension of spatially mobilized plane (SMP) to frictional and cohesive materials and its application to cemented sands, Soils and Foundations., vol. 35, no. 4, pp. 63–72, 1995. DOI: 10.3208/sandf.35.4_63.
  • Y. P. Yao, J. Hu, A. Y. Zhou, T. Luo, and N. D. Wang, Unified strength criterion for soils, gravels, rocks, and concretes, Acta Geotech., vol. 10, no. 6, pp. 749–759, 2015. DOI: 10.1007/s11440-015-0404-x.
  • W. Ma, Z. W. Wu, and C. Q. Zhang, Strength and yield criteria of frozen soil, Progr. Nat. Sci., vol. 4, no. 3, pp. 319–322, 1994. DOI: 10.1016/J.COLDREGIONS.2019.02.009.
  • Y. M. Lai, L. Jin, and X. X. Chang, Yield criterion and elasto-plastic damage constitutive model for frozen sandy soil, Int. J. Plasticity., vol. 25, no. 6, pp. 1177–1205, 2009. DOI: 10.1016/j.ijplas.2008.06.010.
  • D. Chen, D. Y. Wang, W. Ma, L. L. Lei, and G. Y. Li, A strength criterion for frozen clay considering the influence of stress Lode angle, Can. Geotech. J., vol. 56, no. 11, pp. 1557–1572, 2019. DOI: 10.1139/cgj-2018-0054.
  • D. Zhang, E. L. Liu, X. X. Liu, G. Zhang, and B. T. Song, A new strength criterion for frozen soils considering the influence of temperature and coarse-grained contents, Cold Regions Sci. Technol., vol. 143, no. 2017, pp. 1–12, 2017. DOI: 10.1016/j.coldregions.2017.08.006.
  • M. K. Liao, Y. M. Lai, and C. Wang, A strength criterion for frozen sodium sulfate saline soil, Can. Geotech. J., vol. 53, no. 7, pp. 1176–1185, 2016. DOI: 10.1139/cgj-2015-0569.
  • Y. M. Lai, Y. G. Yang, X. X. Chang, and S. Y. Li, Strength criterion and elastoplastic constitutive model of frozen silt in generalized plastic mechanics, Int. J. Plasticity., vol. 26, no. 10, pp. 1461–1484, 2010. DOI: 10.1016/j.ijplas.2010.01.007.
  • Y. H. Zhao, Y. M. Lai, Z. Zhang, and C. Wang, A nonlinear strength criterion for frozen sulfate saline silty clay with different salt contents, Adv. Mater. Sci. Engin., vol. 2018, pp. 1–8, 2018. DOI: 10.1155/2018/3763568.
  • X. X. Liu, E. L. Liu, D. Zhang, G. Zhang, and B. T. Song, Study on strength criterion for frozen soil, Cold Regions Sci. Technol., vol. 161, pp. 1–20, 2019. DOI: 10.1016/j.coldregions.2019.02.009.
  • H. Matsuoka, and T. Nakai, Relationship among Tresca, Mises, Mohr Coulomb and Matsuoka-Naka failure criteria, Soils Sand Foundations., vol. 25, no. 4, pp. 123–128, 1985. DOI: 10.3208/sandf1972.25.4_123.
  • D. Cioranescu, and P. Donato, An Introduction to Homogenization, Oxford University Press, Oxford, 1999.
  • V. Kouznetsova, W. Brekelmans, and F. Baaijens, An approach to micro-macro modeling of heterogeneous materials, Comput. Mech., vol. 27, no. 1, pp. 37–48, 2001. DOI: 10.1007/s004660000212.
  • V. Kouznetsova, M. Geers, and W. Brekelmans, Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy, Comput. Methods Appl. Mech. Engin., vol. 193, no. 48–51, pp. 5525–5550, 2004. DOI: 10.1016/j.cma.2003.12.073.
  • R. J. Hill, Elastic properties of reinforced solids: Some theoretical principles, J. Mech. Phys. Solids., vol. 11, no. 5, pp. 357–372, 1963. DOI: 10.1016/0022-5096(63)90036-X.
  • Z. J. Shen, and T. L. Chen, Breakage mechanics for geological materials: Structure types and load sharing, Chinese J. Rock Mech. Engin., vol. 23, no. 13, pp. 2137–2142, 2004.
  • E. L. Liu, H. S. Yu, C. Zhou, Q. Nie, and K. T. Luo, A binary-medium constitutive model for artificially structured soils based on the disturbed state concept and homogenization theory, Int. J. Geomech., vol. 17, no. 7, pp. 04016154, 2017. DOI: 10.1061/(ASCE)GM.1943-5622.0000859.
  • Z. Y. Liu, Mechanical characteristics and microstructure mechanism of unsaturated soil subjected to freezing condition [dissertation]. Beijing Jiaotong University, 2018.
  • S. L. Huang, X. T. Feng, and C. Q. Zhang, A new generalized polyaxial strain energy strength criterion of brittle rock and polyaxial test validation, Chinese J. Rock Mech. Engin., vol. 27, no. 1, pp. 124–134, 2008. DOI: 10.3321/j.issn:1000-6915.2008.01.019.
  • Y. G. Yang, F. Gao, and Y. M. Lai, Modified Hoek-Brown criterion for nonlinear strength of frozen soil, Cold Regions Sci. Technol., vol. 86, no. 2013, pp. 98–103, 2013. DOI: 10.1016/j.coldregions.2012.10.010.
  • V. R. Parameswaran, and S. J. Jones, Triaxial testing of frozen sand, J. Glaciol., vol. 27, no. 95, pp. 147–155, 1981. DOI: 10.1017/S0022143000011308.
  • J. L. Qi, and W. Ma, State-of-art of research on mechanical properties of frozen soil, Rock Soil Mech., vol. 31, no. 1, pp. 133–143, 2010. DOI: 10.3969/j.issn.1000-7598.2010.01.025.
  • Y. M. Lai, X. T. Xu, W. B. Yu, and J. L. Qi, An experimental investigation of the mechanical behavior and a hyperplastic constitutive model of frozen loess, Int. J. Engin. Sci., vol. 84, no. v, pp. 29–53, 2014. DOI: 10.1016/j.ijengsci.2014.06.011.
  • X. Y. Liu, E. L. Liu, D. Zhang, G. Zhang, X. Yin, and B. T. Song, Study on effect of coarse-grained content on the mechanical properties of frozen mixed soils, Cold Regions Sci. Technol., vol. 158, no. FEB, pp. 237–251, 2019. DOI: 10.1016/j.coldregions.2018.09.001.
  • Y. G. Yang, Y. M. Lai, and J. B. Li, Laboratory investigation on the strength characteristic of frozen sand considering effect of confining pressure, Cold Regions Sci. Technol., vol. 60, no. 3, pp. 245–250, 2010. DOI: 10.1016/j.coldregions.2009.11.003.
  • F. Luo, E. L. Liu, and Z. Y. Zhu, A strength criterion for frozen moraine soils, Cold Regions Sci. Technol., vol. 164, no. AUG, pp. 102786, 2019. DOI: 10.1016/j.coldregions.2019.102786.
  • E. L. Liu, Q. Nie, and J. H. Zhang, A new strength criterion for structured soils, J. Rock Mech. Geotech. Engin., vol. 5, no. 2, pp. 156–181, 2013. DOI: 10.1016/j.jrmge.2013.03.002.
  • W. Busscher, Fundamentals of soil behavior, Soil Sci., vol. 158, no. 1, pp. 74, 1994. DOI: 10.1097/00010694-199407000-00009.
  • B. E. Martin, and O. Cazacu, Experimental and theoretical investigation of the high-pressure, undrained response of a cohesionless sand, Int. J. Numer. Anal. Meth. Geomech., vol. 37, no. 14, pp. 2321–2347, 2013. DOI: 10.1002/nag.2143.
  • P. V. Lade, J. A. Yamamuro, and P. A. Bopp, Significance of particle crushing in granular materials, J. Geotech. Engin., vol. 122, no. 4, pp. 309–316, 1996. DOI: 10.1061/(ASCE)0733-9410(1996)122:4(309).
  • Q. Chen, C. Yang, C. Zhang, C. Ma, and Z. Pan, Mechanical behavior and particle breakage of tailings under high confining pressure, Engin. Geol., vol. 265, no. 2019, pp. 105419, 2020. DOI: 10.1016/j.enggeo.2019.105419.
  • P. Lade, and J. A. Yamamuro, Drained sand behavior in axisymmetric tests at high pressures, J. Geotech. Engin., vol. 122, no. 2, pp. 120–129, 1996. DOI: 10.1061/(ASCE)0733-9410(1996)122:2(120).
  • D. Zhang, E. L. Liu, X. Y. Liu, G. Zhang, and B. T. Song, A damage constitutive model for frozen sandy soils based on modified Mohr-Coulomb yield criterion, Chinese J. Rock Mech. Engin., vol. 37, no. 004, pp. 978–986, 2018. DOI: 10.13722/j.cnki.jrme.2017.1318.
  • Y. M. Lai, H. B. Cheng, Z. H. G, S. J. Zhang, and X. X. Chang, Stress-strain relationship and nonlinear Mohr strength criterion of frozen sand clay, Chinese J. Rock Mech. Engin., vol. 26, no. 8, pp. 1612–1617, 2007. DOI: 10.3208/sandf.50.45.
  • D. Zhang, and E. L. Liu, Binary-medium-based constitutive model of frozen soils subjected to triaxial loading, Results Phys., vol. 12, pp. 1999–2008, 2019. DOI: 10.1016/j.rinp.2019.02.029.
  • W. Ma, Z. W. Wu, X. X. Chang, and Y. Sheng, Strength characteristics of frozen sandy soil under high Confining Pressure, J. Glaciol. Geocryol., vol. 18, no. 3, pp. 268–272, 1996.
  • X. S. Chen, C. X. Wang, and C. Y. Wu, Experimental study of triaxial shear strength criteria for artificially frozen clay, Mine Construct. Technol., vol. 19, no. 4, pp. 1–7, 1998. DOI: 10.19458/j.cnki.cn11-2456/td.1998.04.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.