247
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

On vibrational-based numerical simulation of a jet engine cowl shell-like structure

ORCID Icon, ORCID Icon &
Pages 4016-4027 | Received 15 Mar 2022, Accepted 05 Jun 2022, Published online: 14 Jun 2022

References

  • R. Lei, J. Bai, and D. Xu, Aerodynamic optimization of civil aircraft with wing-mounted engine jet based on adjoint method, Aerospace Sci. Technol., vol. 93, pp. 105285, 2019. DOI: 10.1016/j.ast.2019.07.018.
  • G. Kai, S. W. Yang, W. Zhang, X. J. Gu, and W. S. Ma, Transient and steady-state nonlinear vibrations of FGM truncated conical shell subjected to blast loads and transverse periodic load using post-difference method, Mech. Adv. Mater. Struct., pp. 1–19, 2022. DOI: 10.1080/15376494.2022.2029638.
  • T. Deb Singha, T. Bandyopadhyay, and A. Karmakar, Dynamic behavior of temperature-dependent FG-CNTRC sandwich conical shell under low-velocity impact, Mech. Adv. Mater. Struct., pp. 1–18, 2021. DOI: 10.1080/15376494.2021.1980930.
  • M. Yang, B. Han, P. Su, F. Li, Z. Zhao, and Q. Zhang, Oblique crushing of truncated conical sandwich shell with corrugated core, Mech. Adv. Mater. Struct., vol. 28, no. 23, pp. 2458–2471, 2021. DOI: 10.1080/15376494.2020.1743396.
  • Z. Guo, F. Li, and Y. Zhang, Research on topological configuration of lightweight high natural frequency plate structure, Mech. Adv. Mater. Struct., pp. 1–10, 2021. DOI: 10.1080/15376494.2021.2018740.
  • J. Høgsberg, Explicit solution for the natural frequency of structures with partial viscoelastic treatment, Mech. Adv. Mater. Struct., vol. 23, no. 7, pp. 784–790, 2016. DOI: 10.1080/15376494.2015.1029166.
  • M. Nikfar, E. Taati, and M. Asghari, On the theoretical and molecular dynamic methods for natural frequencies of multilayer graphene nanosheets incorporating nonlocality and interlayer shear effects, Mech. Adv. Mater. Struct., pp. 1–18, 2021. DOI: 10.1080/15376494.2021.1880675.
  • E. Panettieri, E. Boissin, M. Montemurro, A. Catapano, and D. Jalocha, On the accuracy of a homogenized continuum model of lattice structures in modal analyses, Mech. Adv. Mater. Struct., pp. 1–18, 2021. DOI: 10.1080/15376494.2021.1985196.
  • T. Sumigawa, H. Fang, A. Sakurai, S. Wang, and T. Kitamura, Estimation of anisotropic properties of nano-structured arrays by modal vibration control at microscale, Mech. Adv. Mater. Struct., vol. 25, no. 5, pp. 386–394, 2018. DOI: 10.1080/15376494.2017.1285450.
  • M. Cinefra, A. G. de Miguel, M. Filippi, C. Houriet, A. Pagani, and E. Carrera, Homogenization and free-vibration analysis of elastic metamaterial plates by Carrera Unified Formulation finite elements, Mech. Adv. Mater. Struct., vol. 28, no. 5, pp. 476–485, 2021. DOI: 10.1080/15376494.2019.1578005.
  • S. K. Kumar, D. Harursampath, E. Carrera, M. Cinefra, and S. Valvano, Modal analysis of delaminated plates and shells using Carrera Unified Formulation – MITC9 shell element, Mech. Adv. Mater. Struct., vol. 25, no. 8, pp. 681–697, 2018. DOI: 10.1080/15376494.2017.1302024.
  • Y. Yan, E. Carrera, and A. Pagani, Free vibration analysis of curved metallic and composite beam structures using a novel variable-kinematic DQ method, Mech. Adv. Mater. Struct., pp. 1–27, 2021. DOI: 10.1080/15376494.2021.1909784.
  • P. H. Cabral, et al., Experimental and numerical vibration correlation of pre-stressed laminated reinforced panel, Mech. Adv. Mater. Struct., pp. 1–13, 2020. DOI: 10.1080/15376494.2020.1853285.
  • H. Li, et al., Thermal-vibration aging of fiber-reinforced polymer cylindrical shells with polyurea coating: Theoretical and experimental studies, Mech. Adv. Mater. Struct., pp. 1–16, 2022. DOI: 10.1080/15376494.2022.2032886.
  • M. A. Shahmohammadi, S. M. Mirfatah, H. Salehipour, M. Azhari, and Ö. Civalek, Free vibration and stability of hybrid nanocomposite-reinforced shallow toroidal shells using an extended closed-form formula based on the Galerkin method, Mech. Adv. Mater. Struct., pp. 1–17, 2021. DOI: 10.1080/15376494.2021.1952665.
  • D. G. Ninh, N. M. Quan, and V. N. V. Hoang, Thermally vibrational analyses of functionally graded graphene nanoplatelets reinforced funnel shells with different complex shapes surrounded by elastic foundation, Mech. Adv. Mater. Struct., pp. 1–23, 2021. DOI: 10.1080/15376494.2021.1934763.
  • E. Sobhani, and A. R. Masoodi, Differential quadrature technique for frequencies of the coupled circular arch–arch beam bridge system, Mech. Adv. Mater. Struct., pp. 1–12, 2022. DOI: 10.1080/15376494.2021.2023920.
  • H. Saunders, and P. R. Paslay, Inextensional vibrations of a sphere‐cone shell combination, J. Acoustical Soc. Am., vol. 31, no. 5, pp. 579–583, 1959. DOI: 10.1121/1.1907755.
  • D. Houghton, and A. Chan, Design of a pressurized missile body: Determination of the skin thickness of a cylindrical shell under axial compression, Aircraft Engin. Aerospace Technol., vol. 32, no. 11, pp. 320–326, 1960. DOI: 10.1108/eb033324.
  • W. Hu, and J. Raney, Experimental and analytical study of vibrations of joined shells, AIAA J., vol. 5, no. 5, pp. 976–980, 1967. DOI: 10.2514/3.4111.
  • H. D. Scrymgeour, "Cowling for aircraft engines," ed: Google Patents, 1947.
  • M. L. Mary, "Engine cowl for aircraft," ed: Google Patents, 1952.
  • L. R. Koval, On sound transmission into a thin cylindrical shell under “flight conditions, J. Sound and Vibr., vol. 48, no. 2, pp. 265–275, 1976. DOI: 10.1016/0022-460X(76)90465-X.
  • C. J. Miller, W. A. Millavec, and T. P. Kicher, Thermal stress analysis of layered cylindrical shells, AIAA J., vol. 19, no. 4, pp. 523–530, 1981. DOI: 10.2514/3.7790.
  • C. A. Dimopoulos, and C. J. Gantes, Experimental investigation of buckling of wind turbine tower cylindrical shells with opening and stiffening under bending, Thin-Walled Struct., vol. 54, pp. 140–155, 2012. DOI: 10.1016/j.tws.2012.02.011.
  • L. Tong, Free vibration of orthotropic conical shells, Int. J. Engin. Sci., vol. 31, no. 5, pp. 719–733, 1993. DOI: 10.1016/0020-7225(93)90120-J.
  • X. X. Hu, T. Sakiyama, H. Matsuda, and C. Morita, Vibration analysis of twisted conical shells with tapered thickness, Int. J. Engin. Sci., vol. 40, no. 14, pp. 1579–1598, 2002. DOI: 10.1016/S0020-7225(02)00019-8.
  • H. Zeighampour, and Y. Tadi Beni, Analysis of conical shells in the framework of coupled stresses theory, Int. J. Engin. Sci., vol. 81, pp. 107–122, 2014. DOI: 10.1016/j.ijengsci.2014.04.008.
  • M. Z. Nejad, M. Jabbari, and M. Ghannad, Elastic analysis of axially functionally graded rotating thick cylinder with variable thickness under non-uniform arbitrarily pressure loading, Int. J. Engin. Sci., vol. 89, pp. 86–99, 2015. DOI: 10.1016/j.ijengsci.2014.12.004.
  • C. D. Coman, Bifurcation instabilities in finite bending of circular cylindrical shells, Int. J. Engin. Sci., vol. 119, pp. 249–264, 2017. DOI: 10.1016/j.ijengsci.2017.06.022.
  • V. A. Eremeyev, G. Rosi, and S. Naili, Transverse surface waves on a cylindrical surface with coating, Int. J. Engin. Sci., vol. 147, pp. 103188, 2020. DOI: 10.1016/j.ijengsci.2019.103188.
  • M. Caresta, and N. J. Kessissoglou, Free vibrational characteristics of isotropic coupled cylindrical–conical shells, J. Sound and Vibr., vol. 329, no. 6, pp. 733–751, 2010. DOI: 10.1016/j.jsv.2009.10.003.
  • X. Ma, G. Jin, Y. Xiong, and Z. Liu, Free and forced vibration analysis of coupled conical–cylindrical shells with arbitrary boundary conditions, Int. J. Mech. Sci., vol. 88, pp. 122–137, 2014. DOI: 10.1016/j.ijmecsci.2014.08.002.
  • Y. Qu, H. Hua, and G. Meng, Vibro-acoustic analysis of coupled spherical–cylindrical–spherical shells stiffened by ring and stringer reinforcements, J. Sound and Vibr., vol. 355, pp. 345–359, 2015. DOI: 10.1016/j.jsv.2015.06.034.
  • Z. Su, and G. Jin, Vibration analysis of coupled conical-cylindrical-spherical shells using a Fourier spectral element method, J. Acoust. Soc. Am., vol. 140, no. 5, pp. 3925–3940, 2016. DOI: 10.1121/1.4967853.
  • H. Bagheri, Y. Kiani, and M. Eslami, Free vibration of joined conical–cylindrical–conical shells, Acta Mech., vol. 229, no. 7, pp. 2751–2764, 2018. DOI: 10.1007/s00707-018-2133-3.
  • M. Grinev, A. Anoshkin, P. Pisarev, V. Y. Zuiko, and G. Shipunov, CAD/CAE modelling of mechanical behavior of composite outlet guide vane for aircraft jet engine, Pnrpu Mb., no. 3, pp. 38–51, 2015. DOI: 10.15593/perm.mech/2015.3.04.
  • F. Chen, H. Liu, and S. Zhang, Coupled heat transfer and thermo-mechanical behavior of hypersonic cylindrical leading edges, Int. J. Heat and Mass Transfer., vol. 122, pp. 846–862, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.02.037.
  • B. Conceição, V. Anes, and L. Reis, Load characterization on the joints of the A320 engine inlet cowl acoustic panel, Engin. Failure Anal., vol. 104, pp. 1014–1029, 2019. DOI: 10.1016/j.engfailanal.2019.06.070.
  • S. Dastjerdi, B. Akgöz, Ö. Civalek, M. Malikan, and V. A. Eremeyev, On the non-linear dynamics of torus-shaped and cylindrical shell structures, Int. J. Engin. Sci., vol. 156, pp. 103371, 2020. DOI: 10.1016/j.ijengsci.2020.103371.
  • A. Eyvazian, D. Shahsavari, and B. Karami, On the dynamic of graphene reinforced nanocomposite cylindrical shells subjected to a moving harmonic load, Int. J. Engin. Sci., vol. 154, pp. 103339, 2020. DOI: 10.1016/j.ijengsci.2020.103339.
  • R. C. Batra, and G. J. Nie, Torsional deformations and material tailoring of orthotropic bi-directional FGM hollow truncated conical cylinders with curved lateral surfaces, Int. J. Engin. Sci., vol. 133, pp. 336–351, 2018. DOI: 10.1016/j.ijengsci.2018.10.001.
  • Ö. Civalek, An efficient method for free vibration analysis of rotating truncated conical shells, Int. J. Pressure Vessels and Piping., vol. 83, no. 1, pp. 1–12, 2006. DOI: 10.1016/j.ijpvp.2005.10.005.
  • Ö. Civalek, Vibration analysis of conical panels using the method of discrete singular convolution, Commun. Numer. Meth. Engng., vol. 24, no. 3, pp. 169–181, 2006. DOI: 10.1002/cnm.961.
  • S. Kamarian, M. Salim, R. Dimitri, and F. Tornabene, Free vibration analysis of conical shells reinforced with agglomerated Carbon Nanotubes, Int. J. Mech. Sci., vol. 108–109, pp. 157–165, 2016. DOI: 10.1016/j.ijmecsci.2016.02.006.
  • A. Sofiyev, Review of research on the vibration and buckling of the FGM conical shells, Compos. Struct., vol. 211, pp. 301–317, 2019. DOI: 10.1016/j.compstruct.2018.12.047.
  • X. Zhang, G. Liu, and K. Lam, Vibration analysis of thin cylindrical shells using wave propagation approach, J. Sound and Vibr., vol. 239, no. 3, pp. 397–403, 2001. DOI: 10.1006/jsvi.2000.3139.
  • L. Xuebin, Study on free vibration analysis of circular cylindrical shells using wave propagation, J. Sound and Vibr., vol. 311, no. 3-5, pp. 667–682, 2008. DOI: 10.1016/j.jsv.2007.09.023.
  • P. Kumar, and C. Srinivasa, On buckling and free vibration studies of sandwich plates and cylindrical shells: A review, J. Thermoplastic Compos. Mater., vol. 33, no. 5, pp. 673–724, 2020. DOI: 10.1177/0892705718809810.
  • M. Rezaiee-Pajand, E. Sobhani, and A. R. Masoodi, Free vibration analysis of functionally graded hybrid matrix/fiber nanocomposite conical shells using multiscale method, Aerospace Sci. Technol., vol. 105, pp. 105998, 2020. DOI: 10.1016/j.ast.2020.105998.
  • A. R. Damercheloo, A. R. Khorshidvand, S. M. Khorsandijou, and M. Jabbari, Free vibrational characteristics of GNP-reinforced joined conical–conical shells with different boundary conditions, Thin-Walled Struct., vol. 169, pp. 108287, 2021. DOI: 10.1016/j.tws.2021.108287.
  • Q. He, H.-L. Dai, Q.-F. Gui, and J.-J. Li, Analysis of vibration characteristics of joined cylindrical-spherical shells, Engin. Struct., vol. 218, pp. 110767, 2020. DOI: 10.1016/j.engstruct.2020.110767.
  • H. Bagheri, Y. Kiani, N. Bagheri, and M. Eslami, Free vibration of joined cylindrical–hemispherical FGM shells, Arch. Appl. Mech., vol. 90, no. 10, pp. 2185–2199, 2020. DOI: 10.1007/s00419-020-01715-1.
  • M. Rezaiee-Pajand, E. Sobhani, and A. R. Masoodi, Semi-analytical vibrational analysis of functionally graded carbon nanotubes coupled conical-conical shells, Thin-Walled Struct., vol. 159, pp. 107272, 2021. DOI: 10.1016/j.tws.2020.107272.
  • E. Sobhani, A. R. Masoodi, and A. R. Ahmadi-Pari, Vibration of FG-CNT and FG-GNP sandwich composite coupled conical-cylindrical-conical shell, Compos. Struct., vol. 273, pp. 114281, 2021. DOI: 10.1016/j.compstruct.2021.114281.
  • E. Sobhani, A. Arbabian, Ö. Civalek, and M. Avcar, The free vibration analysis of hybrid porous nanocomposite joined hemispherical–cylindrical–conical shells, Engin. Comput., pp. 1–28, 2021. DOI: 10.1007/s00366-021-01453-0.
  • Q. Chai, and Y. Q. Wang, Traveling wave vibration of graphene platelet reinforced porous joined conical-cylindrical shells in a spinning motion, Engin. Struct., vol. 252, pp. 113718, 2022. DOI: 10.1016/j.engstruct.2021.113718.
  • E. Sobhani, and A. R. Masoodi, On the circumferential wave responses of connected elliptical-cylindrical shell-like submerged structures strengthened by nano-reinforcer, Ocean Engin., vol. 247, pp. 110718, 2022. DOI: 10.1016/j.oceaneng.2022.110718.
  • E. Sobhani, A. R. Masoodi, O. Civalek, and A. R. Ahmadi-Pari, Agglomerated impact of CNT vs. GNP nanofillers on hybridization of polymer matrix for vibration of coupled hemispherical-conical-conical shells, Aerospace Sci. Technol., vol. 120, pp. 107257, 2022. DOI: 10.1016/j.ast.2021.107257.
  • E. Sobhani, R. Moradi-Dastjerdi, K. Behdinan, A. R. Masoodi, and A. R. Ahmadi-Pari, Multifunctional trace of various reinforcements on vibrations of three-phase nanocomposite combined hemispherical-cylindrical shells, Composite Struct., vol. 279, pp. 114798, 2022. DOI: 10.1016/j.compstruct.2021.114798.
  • E. Sobhani, and A. R. Masoodi, Natural frequency responses of hybrid polymer/carbon fiber/FG-GNP nanocomposites paraboloidal and hyperboloidal shells based on multiscale approaches, Aerospace Sci. Technol., vol. 119, pp. 107111, 2021. DOI: 10.1016/j.ast.2021.107111.
  • E. Sobhani, and A. R. Masoodi, A comprehensive shell approach for vibration of porous nano-enriched polymer composite coupled spheroidal-cylindrical shells, Compos. Struct., vol. 289, pp. 115464, 2022. DOI: 10.1016/j.compstruct.2022.115464.
  • H. Sadeghian, and G. Rezazadeh, Comparison of generalized differential quadrature and Galerkin methods for the analysis of micro-electro-mechanical coupled systems, Commun. Nonlinear Sci. Numer. Simul., vol. 14, no. 6, pp. 2807–2816, 2009. DOI: 10.1016/j.cnsns.2008.07.016.
  • S. Chakraverty, N. R. Mahato, P. Karunakar, and T. D. Rao, Advanced Numerical and Semi-Analytical Methods for Differential Equations. 1st ed. JohnWiley & Sons, USA, 2019.
  • E. Sobhani, A. R. Masoodi, Ö. Civalek, and M. Avcar, Natural frequency analysis of FG-GOP/polymer nanocomposite spheroid and ellipsoid doubly curved shells reinforced by transversely-isotropic carbon fibers, Engin. Anal. Boundary Elements., vol. 138, pp. 369–389, 2022. DOI: 10.1016/j.enganabound.2022.03.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.