320
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Band gap characteristics of two-dimensional functionally graded periodic grid structures with local resonators

ORCID Icon, , , &
Pages 4028-4039 | Received 25 Mar 2022, Accepted 05 Jun 2022, Published online: 14 Jun 2022

References

  • L. Brillouin, Wave Propagation in Periodic Structures, Dover Publication Incorporated, New York, 1946.
  • R. Martínez-Sala, J. Sancho, J. V. Sánchez, V. Gómez, J. Llinares, and F. Meseguer, Sound attenuation by sculpture, Nature., vol. 378, no. 6554, pp. 241–241, 1995. DOI: 10.1038/378241a0.
  • F. Yu, et al., Structural design and band gap properties of 3D star-shaped single-phase metamaterials, J. Vib. Eng. Technol., vol. 10, pp. 9, 2022.
  • C. Wang, X. Yao, G. Wu, and L. Tang, Complete vibration band gap characteristics of two-dimensional periodic grid structures, Compos. Struct., vol. 274, pp. 1–9, 2021.
  • H. Jafari, S. Sepehri, M. R. H. Yazdi, M. M. Mashhadi, and M. M. S. Fakhrabadi, Hybrid lattice metamaterials with auxiliary resonators made of functionally graded materials, Acta Mech., vol. 231, no. 12, pp. 4835–4849, 2020. DOI: 10.1007/s00707-020-02799-0.
  • A. Srikantha Phani, J. Woodhouse, and N. A. Fleck, Wave propagation in two-dimensional periodic lattices, J. Acoust. Soc. Am., vol. 119, no. 4, pp. 1995–2005, 2006. DOI: 10.1121/1.2179748.
  • G. Trainiti, J. J. Rimoli, and M. Ruzzene, Wave propagation in undulated structural lattices, Int. J. Solids Struct., vol. 97-98, pp. 431–444, 2016. DOI: 10.1016/j.ijsolstr.2016.07.006.
  • Y. L. Li, and H. Q. Zhang, Band gap mechanism and vibration attenuation characteristics of the quasi-one-dimensional tetra-chiral metamaterial, Eur. J. Mech. A-Solids., vol. 92, pp. 17, 2022.
  • L. Tang, X. Yao, G. Wu, and D. Tang, Band gaps characteristics analysis of periodic oscillator coupled damping beam, Materials., vol. 13, no. 24, pp. 5748, 2020. DOI: 10.3390/ma13245748.
  • I. L. Chang, Z.-X. Liang, H.-W. Kao, S.-H. Chang, and C.-Y. Yang, The wave attenuation mechanism of the periodic local resonant metamaterial, J. Sound Vib., vol. 412, pp. 349–359, 2018. DOI: 10.1016/j.jsv.2017.10.008.
  • M. Mazzotti, I. Bartoli, and M. Miniaci, Modeling bloch waves in prestressed phononic crystal plates, Front. Mater., vol. 6, pp. 1–9, 2019. DOI: 10.3389/fmats.2019.00074.
  • L. J. Lei, L. C. Miao, C. Li, X. D. Liang, and J. J. Wang, The effects of composite primitive cells on band gap property of locally resonant phononic crystal, Mod. Phys. Lett. B., vol. 35, no. 20, pp. 2150334, 2021. DOI: 10.1142/S0217984921503346.
  • A. Stein, M. Nouh, and T. Singh, Widening, transition and coalescence of local resonance band gaps in multi-resonator acoustic metamaterials: From unit cells to finite chains, J. Sound Vib., vol. 523, pp. 20, 2022.
  • Z. Y. Liu, et al., Locally resonant sonic materials, Science (New York, N.Y.)., vol. 289, no. 5485, pp. 1734–1736, 2000. DOI: 10.1126/science.289.5485.1734.
  • D. M. Mead, Wave propagation in continuous periodic structures: research contributions from southampton, 1964–1995, J. Sound Vib., vol. 190, no. 3, pp. 495–524, 1996. DOI: 10.1006/jsvi.1996.0076.
  • M.-L. Wu, L.-Y. Wu, W.-P. Yang, and L.-W. Chen, Elastic wave band gaps of one-dimensional phononic crystals with functionally graded materials, Smart Mater. Struct., vol. 18, no. 11, pp. 115013, 2009. DOI: 10.1088/0964-1726/18/11/115013.
  • G. Carta, G. F. Giaccu, and M. Brun, A phononic band gap model for long bridges. The ‘Brabau’ bridge case, Eng. Struct., vol. 140, pp. 66–76, 2017. DOI: 10.1016/j.engstruct.2017.01.064.
  • D. Richards, and D. J. Pines, Passive reduction of gear mesh vibration using a periodic drive shaft, J. Sound Vib., vol. 264, no. 2, pp. 317–342, 2003. DOI: 10.1016/S0022-460X(02)01213-0.
  • C. Li, S. Zhang, L. Gao, W. Huang, Z. Liu, and J. Wang, Vibration attenuation investigations on a distributed phononic crystals beam for rubber concrete structures, Math. Prob. Eng., vol. 2021, pp. 1–14, 2021.
  • F. Gao, Z. Wu, F. Li, and C. Zhang, Numerical and experimental analysis of the vibration and band-gap properties of elastic beams with periodically variable cross sections, Waves Random Complex Media., vol. 29, no. 2, pp. 299–316, 2019. DOI: 10.1080/17455030.2018.1430918.
  • Z. K. Guo, G. B. Hu, V. Sorokin, L. H. Tang, X. D. Yang, and J. Zhang, Low-frequency flexural wave attenuation in metamaterial sandwich beam with hourglass lattice truss core, Wave Motion., vol. 104, pp. 102750, 2021. DOI: 10.1016/j.wavemoti.2021.102750.
  • D. Tang, L. Li, Z. Zhang, and S. Wu, Propagation and attenuation characteristics of free flexural waves in multi-stepped periodic beams by the method of reverberation-ray matrix, Waves Random Complex Media., pp. 1–27, 2021. DOI: 10.1080/17455030.2021.1931553.
  • L. X. Xie, B. Z. Xia, J. Liu, G. L. Huang, and J. R. Lei, An improved fast plane wave expansion method for topology optimization of phononic crystals, Int. J. Mech. Sci., vol. 120, pp. 171–181, 2017. DOI: 10.1016/j.ijmecsci.2016.11.023.
  • Y. Zhang, Z. Q. Ni, L. Han, Z. M. Zhang, and H. Y. Chen, Study of improved plane wave expansion method on phononic crystal, Optoelectron. Adv. Mater.-Rapid Commun., vol. 5, no. 8, pp. 870–873, 2011.
  • J. Z. Sun, and P. J. Wei, Band gaps of 2D phononic crystal with imperfect interface, Mech. Adv. Mater. Struct., vol. 21, no. 2, pp. 107–116, 2014. DOI: 10.1080/15376494.2012.677110.
  • M. Hajhosseini, and A. M. Parrany, Study on in-plane band gap characteristics of a circular periodic structure using DQM, Int. J. Appl. Mechanics., vol. 12, no. 07, pp. 2050083, 2020. DOI: 10.1142/S1758825120500830.
  • C. L. Wang, X. L. Yao, G. X. Wu, and L. Tang, Vibration band gap characteristics of two-dimensional periodic double-wall grillages, Materials., vol. 14, no. 23, pp. 7174, 2021. DOI: 10.3390/ma14237174.
  • Y. Li, Q. Zhou, L. Zhou, L. Zhu, and K. Guo, Flexural wave band gaps and vibration attenuation characteristics in periodic bi-directionally orthogonal stiffened plates, Ocean Eng., vol. 178, pp. 95–103, 2019. DOI: 10.1016/j.oceaneng.2019.02.076.
  • X. N. Liu, G. K. Hu, C. T. Sun, and G. L. Huang, Wave propagation characterization and design of two-dimensional elastic chiral metacomposite, J. Sound Vib., vol. 330, no. 11, pp. 2536–2553, 2011. DOI: 10.1016/j.jsv.2010.12.014.
  • Y. K. Dong, H. Yao, J. Du, J. B. Zhao, and C. Ding, Research on bandgap property of a novel small size multi-band phononic crystal, Phys. Lett. A., vol. 383, no. 4, pp. 283–288, 2019. DOI: 10.1016/j.physleta.2018.10.042.
  • J. Hong, X. He, D. Zhang, B. Zhang, and Y. Ma, Vibration isolation design for periodically stiffened shells by the wave finite element method, J. Sound Vib., vol. 419, pp. 90–102, 2018. DOI: 10.1016/j.jsv.2017.12.035.
  • S. Wen, Y. Xiong, S. Hao, F. Li, and C. Zhang, Enhanced band-gap properties of an acoustic metamaterial beam with periodically variable cross-sections, Int. J. Mech. Sci., vol. 166, pp. 1–10, 2020.
  • S. L. Zuo, F. M. Li, and C. Z. Zhang, Numerical and experimental investigations on the vibration band-gap properties of periodic rigid frame structures, Acta Mech., vol. 227, no. 6, pp. 1653–1669, 2016. DOI: 10.1007/s00707-016-1587-4.
  • T. Ren, F. M. Li, Y. N. Chen, C. C. Liu, and C. Z. Zhang, Improvement of the band-gap characteristics of active composite laminate metamaterial plates, Compos. Struct., vol. 254, pp. 13, 2020.
  • J. F. Doyle, and T. Farris, A spectrally formulated finite element for flexural wave propagation in beams, Int. J. Anal. Exp. Modal Anal., vol. 5, pp. 13–23, 1990.
  • J. F. Doyle, A spectrally formulated finite element for longitudinal wave propagation, Int. J. Anal. Exp. Modal Anal., vol. 3, pp. 1–5, 1988.
  • J. F. Doyle, Wave Propagation in Structures: spectral Analysis Using Fast Discrete Fourier Transforms, Springer-Verlag New York, 1997.
  • Z. J. Wu, and F. M. Li, Spectral element method and its application in analysing the vibration band gap properties of two-dimensional square lattices, J. Vib. Control., vol. 22, no. 3, pp. 710–721, 2016. DOI: 10.1177/1077546314531805.
  • Z. J. Wu, F. M. Li, and C. Z. Zhang, Vibration band-gap properties of three-dimensional Kagome lattices using the spectral element method, J. Sound Vib., vol. 341, pp. 162–173, 2015. DOI: 10.1016/j.jsv.2014.12.038.
  • D. S. Wang, P. Zhou, T. Jin, and H. P. Zhu, Damage identification for beam structures using the laplace transform-based spectral element method and strain statistical moment, J. Aerosp. Eng., vol. 31, no. 3, pp. 04018016, 2018. DOI: 10.1061/(ASCE)AS.1943-5525.0000838.
  • R. L. Lucena, and J. M. C. Dos Santos, Structural health monitoring using time reversal and cracked rod spectral element, Mech. Syst. Sig. Process., vol. 79, pp. 86–98, 2016. DOI: 10.1016/j.ymssp.2016.02.044.
  • P. Ghaderi, S. I. Rich, and A. J. Dick, Asme and, "Spectral-domain based impact force identification for rod structures", in: ASME International Mechanical Engineering Congress and Exposition (IMECE2013), Amer Soc Mechanical Engineers, San Diego, CA, 2013. DOI: 10.1115/IMECE2013-64892.
  • P. Ghaderi, A. J. Dick, J. R. Foley, and G. Falbo, Practical high-fidelity frequency-domain force and location identification, Comput. Struct., vol. 158, pp. 30–41, 2015. DOI: 10.1016/j.compstruc.2015.05.028.
  • M. Espo, M. H. Abolbashari, and S. M. Hosseini, Band structure analysis of wave propagation in piezoelectric nano-metamaterials as periodic nano-beams considering the small scale and surface effects, Acta Mech., vol. 231, no. 7, pp. 2877–2893, 2020. DOI: 10.1007/s00707-020-02678-8.
  • D. Qian, Wave propagation in a thermo-magneto-mechanical phononic crystal nanobeam with surface effects, J Mater Sci., vol. 54, no. 6, pp. 4766–4779, 2019. DOI: 10.1007/s10853-018-03208-7.
  • A. G. De Miguel, M. Cinefra, M. Filippi, A. Pagani, and E. Carrera, Validation of FEM models based on Carrera Unified Formulation for the parametric characterization of composite metamaterials, J. Sound Vib., vol. 498, pp. 1–17, 2021.
  • S. I. Fomenko, M. V. Golub, A. Chen, Y. Wang, and C. Zhang, Band-gap and pass-band classification for oblique waves propagating in a three-dimensional layered functionally graded piezoelectric phononic crystal, J. Sound Vib., vol. 439, pp. 219–240, 2019. DOI: 10.1016/j.jsv.2018.09.059.
  • H. N. Nguyen, T. T. Hong, P. V. Vinh, and D. V. Thom, An efficient beam element based on quasi-3D theory for static bending analysis of functionally graded beams, Materials., vol. 12, no. 13, pp. 2198, 2019. DOI: 10.3390/ma12132198.
  • Y. Chen, et al., Free transverse vibrational analysis of axially functionally graded tapered beams via the variational iteration approach, J. Vib. Control., vol. 27, no. 11-12, pp. 1265–1280, 2021. DOI: 10.1177/1077546320940181.
  • U. Gul, M. Aydogdu, and F. Karacam, Dynamics of a functionally graded Timoshenko beam considering new spectrums, Compos. Struct., vol. 207, pp. 273–291, 2019. DOI: 10.1016/j.compstruct.2018.09.021.
  • A. Chakraborty, and S. Gopalakrishnan, A spectrally formulated finite element for wave propagation analysis in functionally graded beams, Int. J. Solids Struct., vol. 40, no. 10, pp. 2421–2448, 2003. DOI: 10.1016/S0020-7683(03)00029-5.
  • M. M. Gasik, Functionally graded materials bulk processing techniques, IJMPT., vol. 39, no. 1/2, pp. 20–29, 2010. DOI: 10.1504/IJMPT.2010.034257.
  • M. Naebe, and K. Shirvanimoghaddam, Functionally graded materials: A review of fabrication and properties, Appl. Mater. Today., vol. 5, pp. 223–245, 2016. DOI: 10.1016/j.apmt.2016.10.001.
  • X.-L. Su, Y.-W. Gao, and Y.-H. Zhou, The influence of material properties on the elastic band structures of one-dimensional functionally graded phononic crystals, J. Appl. Phys., vol. 112, no. 12, pp. 1–8, 2012.
  • L. M. Gao, Z. Zhong, and C. Z. Zhang, Flexural wave in an functionally graded periodic beam, Adv. Vib. Eng., vol. 12, no. 2, pp. 157–163, 2013.
  • J. Li, P. Yang, and S. Li, Multiple band gaps for efficient wave attenuation by inertial amplification in periodic functionally graded beams, Compos. Struct., vol. 271, pp. 1–16, 2021.
  • M. V. Golub, S. I. Fomenko, T. Q. Bui, C. Zhang, and Y. S. Wang, Transmission and band gaps of elastic SH waves in functionally graded periodic laminates, Int. J. Solids Struct., vol. 49, no. 2, pp. 344–354, 2012. DOI: 10.1016/j.ijsolstr.2011.10.013.
  • S. Sepehri, H. Jafari, M. Mosavi Mashhadi, M. R. Hairi Yazdi, and M. M. Seyyed Fakhrabadi, Tunable elastic wave propagation in planar functionally graded metamaterials, Acta Mech., vol. 231, no. 8, pp. 3363–3385, 2020. DOI: 10.1007/s00707-020-02705-8.
  • L. Hadji, Z. Khelifa, and A. B. El Abbes, A new higher order shear deformation model for functionally graded beams, KSCE J Civ Eng., vol. 20, no. 5, pp. 1835–1841, 2016. DOI: 10.1007/s12205-015-0252-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.