402
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Mechanical properties of hybrid structures generated by additively manufactured triply periodic minimal surface structures and foam

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 4317-4328 | Received 06 May 2022, Accepted 18 Jun 2022, Published online: 09 Jul 2022

References

  • T. Maconachie, M. Leary, B. Lozanovski, et al., SLM lattice structures: Properties, performance, applications and challenges, Mater. Des., vol. 183, pp. 108137, 2019. DOI: 10.1016/j.matdes.2019.108137.
  • J. Miltz, and O. Ramon, Energy absorption characteristics of polymeric foams used as cushioning materials, Polym. Eng. Sci., vol. 30, no. 2, pp. 129–133, 1990. DOI: 10.1002/pen.760300210.
  • J. Podroužek, M. Marcon, K. Ninčević, and R. Wan-Wendner, Bio-inspired 3D infill patterns for additive manufacturing and structural applications, Materials, vol. 12, no. 3, pp. 499, 2019. DOI: 10.3390/ma12030499.
  • D. Zouzias, G. De Bruyne, R. Miralbes, and J. Ivens, Characterization of the tensile behavior of expanded polystyrene foam as a function of density and strain rate, Adv. Eng. Mater., vol. 22, no. 12, pp. 2000794, 2020. DOI: 10.1002/adem.202000794.
  • R. Miralbes, D. Ranz, F. J. Pascual, et al., Characterization of additively manufactured triply periodic minimal surface structures under compressive loading, Mech. Adv. Mater. Struct., vol. 29, no. 13, pp. 1841–1855, 2020. DOI: 10.1080/15376494.2020.1842948.
  • M. Avalle, G. Belingardi, and R. Montanini, Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram, Int. J. Impact Eng., vol. 25, no. 5, pp. 455–472, 2001. DOI: 10.1016/S0734-743X(00)00060-9.
  • Y.-J. Hwang, K.-S. Kim, B. AlMangour, et al., A new approach for manufacturing stochastic pure magnesium foam by laser powder bed fusion: Fabrication, geometrical characteristics, and compressive mechanical properties, Adv. Eng. Mater., vol. 23, no. 12, pp. 2100483, 2021. DOI: 10.1002/adem.202100483.
  • F. Fernandes, R. Alves de Sousa, M. Ptak, and G. Migueis, Helmet design based on the optimization of biocomposite energy-absorbing liners under multi-impact loading, Appl. Sci., vol. 9, no. 4, pp. 735, 2019. DOI: 10.3390/app9040735.
  • J. C. Najmon, J. DeHart, Z. Wood, and A. Tovar, Cellular helmet liner design through bio-inspired structures and topology optimization of compliant mechanism lattices, SAE Int. J. Trans. Safety, vol. 6, no. 3, pp. 217–235, 2018. DOI: 10.4271/2018-01-1057.
  • J. Abderezaei, F. Rezayaraghi, B. Kain, et al., An overview of the effectiveness of bicycle helmet designs in impact testing, Front Bioeng. Biotechnol., vol. 9, pp. 718407, 2021. DOI: 10.3389/fbioe.2021.718407.
  • D. H. Blanco, A. Cernicchi, and U. Galvanetto, Design of an innovative optimized motorcycle helmet, Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol., vol. 228, no. 2, pp. 95–110, 2014. DOI: 10.1177/1754337113518748.
  • H. Mustafa, T. Y. Pang, T. Ellena, and S. H. Nasir, Impact attenuation of user-centred bicycle helmet design with different foam densities, J. Phys: Conf. Ser., vol. 1150, pp. 12043, 2019. DOI: 10.1088/1742-6596/1150/1/012043.
  • J. Michio Clark, A. Post, T. Blaine Hoshizaki, and M. D. Gilchrist, Distribution of brain strain in the cerebrum for laboratory impacts to ice hockey goaltender masks, J. Biomech Eng., vol. 140, pp. 121007, 2018. DOI: 10.1115/1.4040605.
  • S. F. Khosroshahi, H. Duckworth, U. Galvanetto, and M. Ghajari, The effects of topology and relative density of lattice liners on traumatic brain injury mitigation, J. Biomech., vol. 97, pp. 109376, 2019. DOI: 10.1016/j.jbiomech.2019.109376.
  • T. Y. Pang, K. T. Thai, A. S. McIntosh, et al., Head and neck responses in oblique motorcycle helmet impacts: A novel laboratory test method, Int J Crashworthiness., vol. 16, no. 3, pp. 297–307, 2011. DOI: 10.1080/13588265.2011.559799.
  • E. Bliven, A. Rouhier, S. Tsai, et al., Evaluation of a novel bicycle helmet concept in oblique impact testing, Accid. Anal. Prev., vol. 124, pp. 58–65, 2019. DOI: 10.1016/j.aap.2018.12.017.
  • S. G. Kroeker, M. Ç. Özkul, A. L. DeMarco, et al., Density variation in the expanded polystyrene foam of bicycle helmets and its influence on impact performance, J Biomech Eng., vol. 142, pp. 41012, 2020. DOI: 10.1115/1.4045709.
  • L. J. Gibson, and M. F. Ashby, Cellular Solids: Structure and Properties, 2nd ed. Cambridge University Press, New York, 1997.
  • S. Higuera, R. Miralbes, and D. Ranz, Mechanical properties and energy–absorption capabilities of thermoplastic sheet gyroid structures, Mech. Adv. Mater. Struct., pp. 1–15, 2021. DOI: 10.1080/15376494.2021.1919803.
  • N. Novak, O. Al-Ketan, L. Krstulović-Opara, et al., Quasi-static and dynamic compressive behaviour of sheet TPMS cellular structures, Compos. Struct., vol. 266, pp. 113801, 2021. DOI: 10.1016/j.compstruct.2021.113801.
  • R. Miralbes, S. Higuera, D. Ranz, and J. A. Gomez, Comparative analysis of mechanical properties and energy absorption capabilities of functionally graded and non-graded thermoplastic sheet gyroid structures, Mech. Adv. Mater. Struct., pp. 1–14, 2021. DOI: 10.1080/15376494.2021.1949509.
  • M. Afshar, A. P. Anaraki, H. Montazerian, and J. Kadkhodapour, Additive manufacturing and mechanical characterization of graded porosity scaffolds designed based on triply periodic minimal surface architectures, J. Mech. Behav. Biomed. Mater., vol. 62, pp. 481–494, 2016. DOI: 10.1016/j.jmbbm.2016.05.027.
  • N. Novak, O. Al-Ketan, M. Borovinšek, et al., Development of novel hybrid TPMS cellular lattices and their mechanical characterisation, J. Mater. Res. Technol., vol. 15, pp. 1318–1329, 2021. DOI: 10.1016/j.jmrt.2021.08.092.
  • Y. Zhang, M.-T. Hsieh, and L. Valdevit, Mechanical performance of 3D printed interpenetrating phase composites with spinodal topologies, Compos Struct., vol. 263, pp. 113693, 2021. DOI: 10.1016/j.compstruct.2021.113693.
  • M. Zhang, Y. Yang, M. Xu, et al., Mechanical properties of multi-materials porous structures based on triply periodic minimal surface fabricated by additive manufacturing, RPJ., vol. 27, no. 9, pp. 1681–1692, 2021. DOI: 10.1108/RPJ-10-2020-0254.
  • S. Yu, J. Sun, and J. Bai, Investigation of functionally graded TPMS structures fabricated by additive manufacturing, Mater. Des., vol. 182, pp. 108021, 2019. DOI: 10.1016/j.matdes.2019.108021.
  • X. Peng, Q. Huang, Y. Zhang, et al., Elastic response of anisotropic gyroid cellular structures under compression: Parametric analysis, Mater. Des., vol. 205, pp. 109706, 2021. DOI: 10.1016/j.matdes.2021.109706.
  • S. Khaleghi, F. N. Dehnavi, M. Baghani, et al., On the directional elastic modulus of the TPMS structures and a novel hybridization method to control anisotropy, Mater. Des., vol. 210, pp. 110074, 2021. DOI: 10.1016/j.matdes.2021.110074.
  • H. Barber, C. N. Kelly, K. Nelson, and K. Gall, Compressive anisotropy of sheet and strut based porous Ti–6Al–4V scaffolds, J. Mech. Behav. Biomed. Mater., vol. 115, pp. 104243, 2021. DOI: 10.1016/j.jmbbm.2020.104243.
  • C. Neff, N. Hopkinson, and N. B. Crane, Experimental and analytical investigation of mechanical behavior of laser-sintered diamond-lattice structures, Addit. Manuf., vol. 22, pp. 807–816, 2018. DOI: 10.1016/j.addma.2018.07.005.
  • S. M. Ahmadi, G. Campoli, S. Amin Yavari, et al., Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells, J. Mech. Behav. Biomed. Mater., vol. 34, pp. 106–115, 2014. DOI: 10.1016/j.jmbbm.2014.02.003.
  • I. Maskery, N. T. Aboulkhair, A. O. Aremu, et al., Compressive failure modes and energy absorption in additively manufactured double gyroid lattices, Addit. Manuf., vol. 16, pp. 24–29, 2017. DOI: 10.1016/j.addma.2017.04.003.
  • D. Li, W. Liao, N. Dai, and Y. M. Xie, Comparison of mechanical properties and energy absorption of sheet-based and strut-based gyroid cellular structures with graded densities, Materials., vol. 12, no. 13, pp. 2183, 2019. DOI: 10.3390/ma12132183.
  • J. B. Ostos, R. G. Rinaldi, C. M Hammetter, et al., Deformation stabilization of lattice structures via foam addition, Acta Mater., vol. 60, no. 19, pp. 6476–6485, 2012. DOI: 10.1016/j.actamat.2012.07.053.
  • S. Raam Kumar, S. Sridhar, R. Venkatraman, and M. Venkatesan, Polymer additive manufacturing of ASA structure: Influence of printing parameters on mechanical properties, Mater. Today Proc., vol. 39, pp. 1316–1319, 2021. DOI: 10.1016/j.matpr.2020.04.500.
  • A. Panesar, M. Abdi, D. Hickman, and I. Ashcroft, Strategies for functionally graded lattice structures derived using topology optimisation for Additive Manufacturing, Addit. Manuf., vol. 19, pp. 81–94, 2018. DOI: 10.1016/j.addma.2017.11.008.
  • S.-Y. Park, K.-S. Kim, B. AlMangour, et al., Effect of unit cell topology on the tensile loading responses of additive manufactured CoCrMo triply periodic minimal surface sheet lattices, Mater. Des., vol. 206, pp. 109778, 2021. DOI: 10.1016/j.matdes.2021.109778.
  • S.-Y. Park, K.-S. Kim, B. AlMangour, et al., Compressive deformation behavior and energy absorption characteristic of additively manufactured sheet CoCrMo triply periodic minimal surface lattices, J. Mater. Res. Technol., vol. 18, pp. 171–184, 2022. DOI: 10.1016/j.jmrt.2022.02.086.
  • D. A. de Aquino, I. Maskery, G. A. Longhitano, et al., Investigation of load direction on the compressive strength of additively manufactured triply periodic minimal surface scaffolds, Int. J. Adv. Manuf. Technol., vol. 109, no. 3–4, pp. 771–779, 2020. DOI: 10.1007/s00170-020-05706-y.
  • S. Doroudiani, and M. T. Kortschot, Polystyrene foams. III. Structure-tensile properties relationships, J. Appl. Polym. Sci., vol. 90, no. 5, pp. 1427–1434, 2003. DOI: 10.1002/app.12806.
  • W. Chen, H. Hao, D. Hughes, et al., Static and dynamic mechanical properties of expanded polystyrene, Mater. Des., vol. 69, pp. 170–180, 2015. DOI: 10.1016/j.matdes.2014.12.024.
  • R. Miralbes, D. Ranz, J. Ivens, and J. A. Gomez, Characterization of cork and cork agglomerates under compressive loads by means of energy absorption diagrams, Eur. J. Wood Wood Prod., vol. 79, no. 3, pp. 719–731, 2020. DOI: 10.1007/s00107-020-01625-7.
  • Z. Alomar, and F. Concli, A Review of the selective laser melting lattice structures and their numerical models, Adv. Eng. Mater., vol. 22, no. 12, pp. 2000611, 2020. DOI: 10.1002/adem.202000611.
  • E. Linul, D. A. Serban, T. Voiconi, et al., Energy - Absorption and efficiency diagrams of rigid PUR foams, KEM., vol. 601, pp. 246–249, 2014. DOI: 10.4028/www.scientific.net/KEM.601.246.
  • P. Wei, and L. Liu, Influence of density on compressive properties and energy absorption of foamed aluminum alloy, J. Wuhan Univ. Technol., vol. 22, no. 2, pp. 225–228, 2007. DOI: 10.1007/s11595-005-2225-5.
  • A. G. Hanssen, M. Langseth, and O. S. Hopperstad, Static and dynamic crushing of square aluminium extrusions with aluminium foam filler, Int. J. Impact Eng., vol. 24, no. 4, pp. 347–383, 2000. DOI: 10.1016/S0734-743X(99)00169-4.
  • M. Benedetti, J. Klarin, F. Johansson, et al., Study of the compression behaviour of Ti6Al4V trabecular structures produced by additive laser manufacturing, Materials., vol. 12, no. 9, pp. 1471, 2019. DOI: 10.3390/ma12091471.
  • S. M. H. Mirbagheri, and M. Salehi, Complementary and normalized energies during static and dynamic uniaxial deformation of single and multi-layer foam-filled tube, J. Sandw. Struct. Mater., vol. 24, no. 2, pp. 1470–1490, 2022. DOI: 10.1177/10996362211050914.
  • K. C. Rusch, Load–compression behavior of flexible foams, J. Appl. Polym. Sci., vol. 13, no. 11, pp. 2297–2311, 1969. DOI: 10.1002/app.1969.070131106.
  • I. Maskery, and I. A. Ashcroft, The deformation and elastic anisotropy of a new gyroid-based honeycomb made by laser sintering, Addit Manuf., vol. 36, pp. 101548, 2020. DOI: 10.1016/j.addma.2020.101548.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.