493
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Rayleigh waves isolation based on metamaterials surface

&
Pages 4361-4371 | Received 10 May 2022, Accepted 18 Jun 2022, Published online: 29 Jun 2022

References

  • N. Correia, J. Barbosa, R. Calcada, and R. Delgado, Track–ground vibrations induced by railway traffic: experimental validation of a 3D numerical model, Soil Dyn. Earthq. Eng., vol. 97, pp. 324–344, 2017. DOI: 10.1016/j.soildyn.2017.03.004.
  • L. Ducarne, D. Ainalis, and G. Kouroussis, Assessing the ground vibrations produced by a heavy vehicle traversing a traffic obstacle, Sci. Total Environ., vol. 612, pp. 1568–1576, 2018. DOI: 10.1016/j.scitotenv.2017.08.226.
  • Y. Ko and C. Kuo, Characteristics of ground vibrations induced by Teleseismic earthquakes and their impact on vibration-densitive facilities, J. Earthq. Eng., pp. 1991526, 2022.
  • M. Ma, W. Liu, and D. Ding, Prediction of influence of metro trains induced vibrations on sensitive instruments, J. Vib. Shock., vol. 30, pp. 185–190, 2011.
  • C. Zou, J. Moore, M. Sanayei, and Y. Wang, Impedance model for estimating train-induced building vibrations, Eng. Struct., vol. 172, pp. 739–750, 2018. DOI: 10.1016/j.engstruct.2018.06.032.
  • Q. Xia, W. Qu, Y. Li, and J. Zhao, Vibration isolation of existing buildings in microvibration traffic environment, Shock and Vib., vol. 2019, pp. 1–13, 2019. DOI: 10.1155/2019/1465638.
  • R. Quinteros, A. Barbat, L. Nallim, and S. Oller, Numerical study of vibrations induced by traffic in structures and a screen alternative for its mitigation, Int. J. Archit. Herit., vol. 15, no. 10, pp. 1512–1525, 2021. DOI: 10.1080/15583058.2019.1706790.
  • Z. Cheng, Z. Shi, A. Palermo, H. Xiang, W. Guo, and A. Marzani, Seismic vibrations attenuation via damped layered periodic foundations, Eng. Struct., vol. 15, pp. 110427, 2020.
  • Y. Zeng, et al., A broadband seismic metamaterial plate with simple structure and easy realization, J. Appl. Phys., vol. 125, no. 22, pp. 224901, 2019. DOI: 10.1063/1.5080693.
  • C. Lim, W. Muhammad, and J. Reddy, Built-up structural steel sections as seismic metamaterials for surface wave attenuation with low frequency wide bandgap in layered soil medium, Eng. Struct., vol. 188, pp. 440–451, 2019. DOI: 10.1016/j.engstruct.2019.03.046.
  • Z. Liu, et al., Locally resonant sonic materials, Science., vol. 289, no. 5485, pp. 1734–1736, 2000. DOI: 10.1126/science.289.5485.1734.
  • Z. Cheng and Z. Shi, Novel composite periodic structures with attenuation zones, Eng. Struct., vol. 56, pp. 1271–1282, 2013. DOI: 10.1016/j.engstruct.2013.07.003.
  • J. Huang, W. Liu, and Z. Shi, Surface-wave attenuation zone of layered periodic structures and feasible application in ground vibration reduction, Const. Build. Mat., vol. 141, pp. 1–11, 2017. DOI: 10.1016/j.conbuildmat.2017.02.153.
  • Y. Jiang, et al., Vibration attenuation analysis of periodic underground barriers using complex band diagrams, Comput. Geotech., vol. 128, pp. 103821, 2020. DOI: 10.1016/j.compgeo.2020.103821.
  • M. Liu and W. Zhu, Nonlinear transformation-based broadband cloaking for flexural waves in elastic thin plates, J. Sound and Vib., vol. 445, pp. 270–287, 2019. DOI: 10.1016/j.jsv.2018.12.025.
  • B. Meirbekova and M. Brun, Control of elastic shear waves by periodic geometric transformation: cloaking, high reflectivity and snomalous resonances, J. Mech. Phys. Solids., vol. 137, pp. 103816, 2020. DOI: 10.1016/j.jmps.2019.103816.
  • L. Ning, Y. Wang, and Y. Wang, Active control cloak of the elastic wave metamaterial, Int. J. Solids and Struct., vol. 202, pp. 126–135, 2020. DOI: 10.1016/j.ijsolstr.2020.06.009.
  • J. Ponti, E. Riva, F. Braghin, and R. Ardito, Elastic three-dimensional metaframe for selective wave filtering and polarization control, Appl. Phys. Lett., vol. 119, no. 21, pp. 211903, 2021. DOI: 10.1063/5.0065553.
  • S. Mousavi, A. Khanikaev, and Z. Wang, Topologically protected elastic waves in phononic metamaterials, Nat Commun., vol. 6, pp. 8682, 2015.
  • J. Jiao, T. Chen, and D. Yu, Observation of topological valley waveguide transport of elastic waves in snowflake plates, Compos. Struct., vol. 286, pp. 115297, 2022. DOI: 10.1016/j.compstruct.2022.115297.
  • X. Wu, Y. Jin, A. Khelif, X. Zhuang, T. Rabczuk, and D. Baharm, Topological surface wave metamaterials for robust vibration attenuation and energy harvesting, Mech. Adv. Mater. Struc., vol. 1, pp. 1937758, 2021.
  • S. Krodel, N. Thome, and C. Daraio, Wide band-gap seismic metastructures, Extrem Mech Lett., vol. 4, pp. 111–117, 2015. DOI: 10.1016/j.eml.2015.05.004.
  • D. Mu, H. Shu, L. Zhao, and S. An, A review of research on seismic metamaterials, Adv. Eng. Mater., vol. 22, no. 4, pp. 1901148, 2020. DOI: 10.1002/adem.201901148.
  • Y. Zhao, X. Zhou, and G. Huang, Non-reciprocal Rayleigh waves in elastic gyroscopic medium, J. Mech. Phys. Solids., vol. 143, pp. 104065, 2020. DOI: 10.1016/j.jmps.2020.104065.
  • S. Brule, S. Enoch, and S. Guenneau, Emergence of seismic metamaterials: Current state and future perspectives, Phys. Lett. A., vol. 384, no. 1, pp. 126034, 2020. DOI: 10.1016/j.physleta.2019.126034.
  • G. Finocchio, et al., Seismic metamaterials based on isochronous mechanical oscillators, Appl. Phys. Lett., vol. 104, no. 19, pp. 191903, 2014. DOI: 10.1063/1.4876961.
  • A. Palermo, S. Krödel, A. Marzani, and C. Daraio, Engineered metabarrier as shield from seismic surface waves, Sci Rep., vol. 6, pp. 39356, 2016.
  • F. Zeighami, A. Palermo, and A. Marzani, Rayleigh waves in locally resonant metamaterials, Int. J. Mech. Sci., vol. 4, pp. 106250, 2020.
  • X. Pu, A. Palermo, Z. Cheng, Z. Shi, and A. Marzani, Seismic metasurfaces on porous layered media: Surface resonators and fluid-solid interaction effects on the propagation of Rayleigh waves, Int. J. Eng. Sci., vol. 154, pp. 103347, 2020. DOI: 10.1016/j.ijengsci.2020.103347.
  • J. Marigo, K. Pham, A. Maurel, and S. Guenneau, Effective model for elastic waves propagating in a substrate supporting a dense array of plates/beams with flexural resonances, J. Mech. Phys. Solids., vol. 143, pp. 104029, 2020. DOI: 10.1016/j.jmps.2020.104029.
  • W. Liu, G. Yoon, B. Yi, Y. Yang, and Y. Chen, Ultra-wide band gap metasurfaces for controlling seismic surface waves, Extreme Mech. Lett., vol. 41, pp. 101018, 2020. DOI: 10.1016/j.eml.2020.101018.
  • Q. Wu, H. Chen, H. Nassar, and G. Huang, Non-reciprocal Rayleigh wave propagation in space–time modulated surface, J. Mech. Phys. Solids., vol. 146, pp. 104196, 2021. DOI: 10.1016/j.jmps.2020.104196.
  • A. Palermo, B. Yousefzadeh, C. Daraio, and A. Marzani, Rayleigh wave propagation in nonlinear metasurfaces, J. Sound Vib., vol. 3, pp. 116599, 2022.
  • J. Lou, X. Fang, J. Du, and H. W, Propagation of fundamental and third harmonics along a nonlinear seismic metasurface, Int. J. Mech. Sci., vol. 221, pp. 107189, 2022. DOI: 10.1016/j.ijmecsci.2022.107189.
  • M. Miniaci, A. Krushynska, F. Bosia, and N. M. Pugno, Large scale mechanical metamaterials as seismic shields, New J. Phys., vol. 18, no. 8, pp. 083041, 2016. DOI: 10.1088/1367-2630/18/8/083041.
  • H. Fan and J. Long, In-plane surface wave in a classical elastic half-space covered by a surface layer with microstructure, Acta Mech., vol. 231, no. 11, pp. 4463–4477, 2020. DOI: 10.1007/s00707-020-02769-6.
  • Y. Zeng, et al., A Matryoshka-like seismic metamaterial with wide band-gap characteristics, Int. J. Solids Struct., vol. 185–186, pp. 334–341, 2020. DOI: 10.1016/j.ijsolstr.2019.08.032.
  • X. Wang, S. Wan, P. Zhou, L. Zhou, and B. Zhu, Topology optimization of periodic pile barriers and its application in vibration reduction for plane waves, Soil Dyn. Earthq. Eng., vol. 153, pp. 107119, 2022. DOI: 10.1016/j.soildyn.2021.107119.
  • F. Meseguer, et al., Rayleigh wave attenuation by a semi-infinite two dimensional elastic band gap crystal, Phys. Rev. B., vol. 59, no. 19, pp. 12169–12172, 1999. DOI: 10.1103/PhysRevB.59.12169.
  • G. Jia, and Z. Shi, A new seismic isolation system and its feasibility study, Earthq. Engin. Engin. Vib., vol. 9, no. 1, pp. 75–82, 2010. DOI: 10.1007/s11803-010-8159-8.
  • X. Liu, Z. Shi, and Y. Mo, Comparison of 2D and 3D models for numerical simulation of vibration reduction by periodic pile barriers, Soil Dyn. Earthq. Eng. Part A., vol. 79, pp. 104–107, 2015. DOI: 10.1016/j.soildyn.2015.09.009.
  • Z. Shi, Y. Wen, and Q. Meng, Propagation attenuation of plane waves in saturated soil by pile barriers, Int. J. Geomech., vol. 17, no. 9, pp. 04017053, 2017. DOI: 10.1061/(ASCE)GM.1943-5622.0000963.
  • J. Huang and Z. Shi, Attenuation zones of periodic pile barriers and its application in vibration reduction for plane waves, J. Sound Vib., vol. 332, no. 19, pp. 4423–4439, 2013. DOI: 10.1016/j.jsv.2013.03.028.
  • S. Brule, E. Javelaud, S. Enoch, and S. Guenneau, Experiments on seismic metamaterials: molding surface waves, Phys Rev Lett., vol. 112, no. 13, pp. 133901, 2014.
  • A. Colombi, P. Roux, S. Guenneau, P. Gueguen, and R. Craster, Forests as a natural seismic metamaterial: Rayleigh wave bandgaps induced by local resonances, Sci. Rep., vol. 6, pp. 19238, 2016.
  • Y. Achaoui, T. Antonakakis, S. Brûlé, R. V. Craster, S. Enoch, and S. Guenneau, Clamped seismic metamaterials: ultra-low broad frequency stop-bands, New J. Phys., vol. 19, no. 6, pp. 063022, 2017. DOI: 10.1088/1367-2630/aa6e21.
  • Y. Chen, F. Qian, F. Scarpa, L. Zuo, and X. Zhuang, Harnessing multi-layered soil to design seismic metamaterials with ultralow frequency band gaps, Mater. Des., vol. 175, pp. 107813, 2019. DOI: 10.1016/j.matdes.2019.107813.
  • X. Pu, Q. Meng, and Z. Shi, Experimental studies on surface-wave isolation by periodic wave barriers, Soil Dyn. Earthq. Eng., vol. 130, pp. 106000, 2020. DOI: 10.1016/j.soildyn.2019.106000.
  • X. Wu, Z. Wen, Y. Jin, T. Rabczuk, X. Zhuang, and D. Bahram, Broadband Rayleigh wave attenuation by gradient metamaterials, Int. J. Mech. Sci., vol. 205, pp. 106592, 2021. DOI: 10.1016/j.ijmecsci.2021.106592.
  • R. Cai, Y. Jin, T. Rabczuk, X. Zhuang, and D. Bahram, Propagation and attenuation and pseudo surface waves in viscoelastic metamaterials, J. App. Phys., vol. 129, no. 12, pp. 124903, 2021. DOI: 10.1063/5.0042577.
  • F. Qiao, et al., Study on the dynamic characteristics of soft soil, RSC Adv., vol. 10, no. 8, pp. 4630–4639, 2020. DOI: 10.1039/c9ra05700e.
  • G. Miller and H. Pursey, On the partition of energy between elastic waves in a semi-infinite solid, Proc. Royal Soc., vol. 233, pp. 55–69, 1955.
  • Y. Wu, Y. Lai, and Z. Zhang, Effective medium theory for elastic metamaterials in two dimensions, Phys. Rev. B., vol. 76, no. 20, pp. 205313, 2007. DOI: 10.1103/PhysRevB.76.205313.
  • Y. Lai, Y. Wu, P. Sheng, and Q. Zhang, Hybrid elastic solids, Nat Mater., vol. 10, no. 8, pp. 620–624, 2011. DOI: 10.1038/nmat3043.
  • Y. Xu, J. Wu, and F. Ma, Investigation on negative hybrid-resonant bands of elastic metamaterials by revised effective medium theory, Phys. B: Condensed Matter., vol. 543, pp. 18–26, 2018. DOI: 10.1016/j.physb.2018.05.022.
  • Peer. Peer ground motion database, 2021. http://peer.berkeley.edu/peergroundmotiondatabase.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.