504
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

A lightweight bending actuator based on shape memory alloy and application to gripper

ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 4372-4382 | Received 25 Feb 2022, Accepted 19 Jun 2022, Published online: 04 Jul 2022

References

  • K. Y. Hong, Y. N. Hui, and C. H. Yeow, High-force soft printable pneumatics for soft robotic applications, Soft Robot., vol. 3, no. 3, pp. 144–158, 2016. DOI: 10.1089/soro.2016.0030.
  • D. L. Rus, and M. T. Tolley, Design, fabrication and control of soft robots, Nature, vol. 521, no. 7553, pp. 467–475, 2015. DOI: 10.1038/nature14543.
  • JohnR. Amend, Eric. Brown, Nicholas. Rodenberg, HeinrichM. Jaeger, and Hod. Lipson, A positive pressure universal gripper based on the jamming of granular material, IEEE Trans. Robot., vol. 28, no. 2, pp. 341–350, 2012. DOI: 10.1109/TRO.2011.2171093.
  • Mariangela. Manti, Taimoor. Hassan, Giovanni. Passetti, Nicolò. D'Elia, Cecilia. Laschi, and Matteo. Cianchetti, A bioinspired soft robotic gripper for adaptable and effective grasping, Soft Robot., vol. 2, no. 3, pp. 107–116, 2015. DOI: 10.1089/soro.2015.0009.
  • Y. Hao, A soft gripper with programmable effective length, tactile and curvature sensory feedback, Smart. Mater. Struct., vol. 29, no. 3, pp. 1–11, 2020. DOI: 10.1088/1361-665X/ab6759.
  • M. Sreekumar, T. Nagarajan, and M. Singaperumal, Kinetostatic analysis of a spatial compliant mechanism actuated by three shape memory alloy wires in differential form, Mech. Adv. Mater. Struc., vol. 17, no. 3, pp. 225–236, 2010. DOI: 10.1080/15376490903556600.
  • D. Cao, et al., Nanoindentation measurement of core–skin interphase viscoelastic properties in a sandwich glass composite, Mech Time-Depend Mat, vol. 25, no. 3, pp. 353–363, 2021. DOI: 10.1007/s11043-020-09448-y.
  • D. Cao, et al., The effect of resin uptake on the flexural properties of compression molded sandwich composites, Wind Energy, vol. 25, no. 1, pp. 71–93, 2022. DOI: 10.1002/we.2661.
  • X. Wang, et al., The interfacial shear strength of carbon nanotube sheet modified carbon fiber composites, Challenges in Mech. Time-Depend. Mater., vol. 2, pp. 25–32, 2021. DOI: 10.1007/978-3-030-59542-5_4.
  • H. Jin, et al., Soft and smart modular structures actuated by shape memory alloy (SMA) wires as tentacles of soft robots, Smart Mater. Struct., vol. 25, no. 8, pp. 85026, 2016. DOI: 10.1088/0964-1726/25/8/085026.
  • W. Wang, Y. Tang, and C. Li, Controlling bending deformation of a shape memory alloy-based soft planar gripper to grip deformable objects, Int. J. Mech. Sci., vol. 193, pp. 106181, 2021. DOI: 10.1016/j.ijmecsci.2020.106181.
  • R. Chattaraj, et al., An iteratively optimized resolution to hyper redundancy for dissimilarly doped compliant IPMC actuators, Mechatronics, vol. 46, pp. 154–167, 2017. DOI: 10.1016/j.mechatronics.2017.08.004.
  • Y. Z. Wang, et al., A soft gripper of fast speed and low energy consumption, Sci. China Technol. Sci., vol. 62, no. 1, pp. 31–38, 2019. DOI: 10.1007/s11431-018-9358-2.
  • Z. Ji, et al., 3D printing of hydrogel architectures with complex and controllable shape deformation, Adv. Mater. Technol., vol. 4, no. 4, pp. 1800713, 2019. DOI: 10.1002/admt.201800713.
  • E. Acome, et al., Hydraulically amplified self-healing electrostatic actuators with muscle-like performance, Science, vol. 359, no. 6371, pp. 61–65, 2018. DOI: 10.1126/science.aao6139.
  • Q. Ze, et al., Magnetic shape memory polymers with integrated multifunctional shape manipulation, Adv. Mater., vol. 32, no. 4, pp. 1906657, 2020. DOI: 10.1002/adma.20.
  • Y. Jiang, et al., Chain-like granular jamming: a novel stiffness-programmable mechanism for soft robotics, Soft Robot., vol. 6, no. 1, pp. 118–132, 2019. DOI: 10.1089/soro.2018.0005.
  • L. Liu, et al., Stiffness-tunable robotic gripper driven by dielectric elastomer composite actuators, Smart Mater. Struct., vol. 29, no. 12, pp. 125013, 2020. DOI: 10.1088/1361-665X/abbff6.
  • W. Wang, et al., Shape memory alloy-based soft finger with changeable bending length using targeted variable stiffness, Soft Robot., vol. 7, no. 3, pp. 283–291, 2020. DOI: 10.1089/soro.2018.0166.
  • S. Zhuo, et al., Complex multiphase organohydrogels with programmable mechanics toward adaptive soft-matter machines, Sci. Adv., vol. 6, no. 5, pp. 283–291, 2020. DOI: 10.1126/sciadv.aax1464.
  • J. Li, et al., Stiffness characteristics of soft finger with embedded SMA fibers, Compos. Struct., vol. 160, pp. 758–764, 2017. DOI: 10.1016/j.compstruct.2016.10.045.
  • J. H. Kyung, et al., Design of a microgripper for micromanipulation of microcomponents using SMA wires and flexible hinges, Sens. Actuator A Phys., vol. 141, no. 1, pp. 144–150, 2008. DOI: 10.1016/j.sna.2007.07.013.
  • J. H. Lee, Y. S. Chung, and H. Rodrigue, Application of SMA spring tendons for improved grasping performance, Smart Mater. Struct., vol. 28, no. 3, pp. 1–14, 2019. DOI: 10.1088/1361-665X/aaf5f4.
  • H. Rodrigue, et al., Curved shape memory alloy-based soft actuators and application to soft gripper, Compos Struct., vol. 176, pp. 398–406, 2017. DOI: 10.1016/j.compstruct.2017.05.056.
  • L. C. Brinson, One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable, J. Intel. Mat. Syst. Str., vol. 4, no. 2, pp. 229–242, 1993. DOI: 10.1177/1045389X9300400213.
  • R. S. Manning, and K. A. Hoffman, Stability of n-covered circles for elastic rods with constant planar intrinsic curvature, J. Elasticity, vol. 62, no. 1, pp. 1–23, 2001. DOI: 10.1023/A:1010905411426.
  • https://www.dynalloy.com

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.