138
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Whole body vibration during simulated flight via uncertain models and interval analysis

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 4397-4406 | Received 20 Jun 2022, Accepted 21 Jun 2022, Published online: 07 Jul 2022

References

  • N. J. Mansfield, Human Response to Vibration, CRC Press, Boca Raton, 2004.
  • M. H. Pope, D. G. Wilder, and M. L. Magnusson, A review of studies on seated whole body vibration and low back pain, Proc. Inst. Mech. Eng. H., vol. 213, no. 6, pp. 435–446, 1999. DOI: 10.1243/0954411991535040.
  • A. Burdorf, and G. Sorock, Positive and negative evidence of risk factors for back disorders, Scand. J. Work Environ. Health., vol. 23, no. 4, pp. 243–256, 1997. DOI: 10.5271/sjweh.217.
  • M. Bovenzi, I. Pinto, and N. Stacchini, Low back pain in port machinery operators, J. Sound Vibr., vol. 253, no. 1, pp. 3–20, 2002. DOI: 10.1006/jsvi.2001.4246.
  • B. Rehn, et al., Musculoskeletal symptoms among drivers of all-terrain vehicles, J. Sound Vibr., vol. 253, no. 1, pp. 21–29, 2002. DOI: 10.1006/jsvi.2001.4247.
  • H. Seidel, et al., On human response to prolonged repeated whole-body vibration, Ergonomics, vol. 23, no. 3, pp. 191–211, 1980. DOI: 10.1080/00140138008924734.
  • ISO2631, Mechanical Vibration and Shock; Evaluation of Human Exposure to Whole Body Vibration in the Working Environment; Part 1 General Requirements, International Standard Organization, Switzerland, 2014.
  • ISO5982, Shock—Range of Idealized Values to Characterize Seated-Body Biodynamic Response under Vertical Vibration, International Standard Organization, 2019.
  • T. K. Dempsey, J. D. Leatherwood, and S. A. Clevenson, Development of noise and vibration ride comfort criteria, J. Acoust. Soc. Am., vol. 65, no. 1, pp. 124–132, 1979. DOI: 10.1121/1.382254.
  • A. Zanoni, A. Cocco, and P. Masarati, Multibody dynamics analysis of the human upper body for rotorcraft-pilot interaction, Nonlinear Dyn., vol. 102, no. 3, pp. 1517–1539, 2020. DOI: 10.1007/s11071-020-06005-7.
  • S. Rakheja, K. N. Dewangan, R. G. Dong, and P. Marcotte, Whole-body vibration biodynamics-a critical review: I. Experimental biodynamics, Int. J. Veh. Perform., vol. 6, no. 1, pp. 1–51, 2020. DOI: 10.1504/IJVP.2020.104493.
  • J. I. Kåsin, N. Mansfield, and A. Wagstaff, Whole body vibration in helicopters: risk assessment in relation to low back pain, Aviat. Space Environ. Med., vol. 82, no. 8, pp. 790–796, 2011. DOI: 10.3357/asem.2982.2011.
  • S. D. Smith, Dynamic characteristics and human perception of vibration aboard a military propeller aircraft, Int. J. Ind. Ergon., vol. 38, no. 9-10, pp. 868–879, 2008. DOI: 10.1016/j.ergon.2007.10.021.
  • C. C. Liang, and C. F. Chiang, A study on biodynamic models of seated human subjects exposed to vertical vibration, Int. J. Ind. Ergon., vol. 36, no. 10, pp. 869–890, 2006. DOI: 10.1016/j.ergon.2006.06.008.
  • W. Wang, S. Rakheja, and P. É. Boileau, Relationship between measured apparent mass and seat-to-head transmissibility responses of seated occupants exposed to vertical vibration, J. Sound Vibr., vol. 314, no. 3-5, pp. 907–922, 2008. DOI: 10.1016/j.jsv.2008.01.015.
  • G. S. Paddan, and M. J. Griffin, A review of the transmission of translational seat vibration to the head, J. Sound Vibr., vol. 215, no. 4, pp. 863–882, 1998. DOI: 10.1006/jsvi.1998.1592.
  • C. Suggs, C. Abrams, and L. Stikeleather, Application of a damped spring-mass human vibration simulator in vibration testing of vehicle seats, Ergonomics., vol. 12, no. 1, pp. 79–90, 1969. DOI: 10.1080/00140136908931030.
  • L. Wei, and J. Griffin, The prediciton of seat transmissibility from measures of seat impedance, J. Sound Vibr., vol. 214, no. 1, pp. 121–137, 1998. DOI: 10.1006/jsvi.1998.1540.
  • N. Nawayseh, and M. Griffin, A model of the vertical apparent mass and the fore-and-aft cross-axis apparent mass of the human body during vertical whole-body vibration, J. Sound Vibr., vol. 319, no. 1-2, pp. 719–730, 2009. DOI: 10.1016/j.jsv.2008.05.030.
  • P. É. Boileau, and S. Rakheja, Whole-body vertical biodynamic response characteristics of the seated vehicle driver: measurement and model development, Int. J. Ind. Ergon., vol. 22, no. 6, pp. 449–472, 1998. DOI: 10.1016/S0169-8141(97)00030-9.
  • M. A. Abdeen, and W. Abbas, Prediction the biodynamic response of the seated human body using artificial intelligence technique, Int. J. Eng., vol. 4, pp. 491–506, 2011.
  • Z. Srdjevic, and L. Cveticanin, Entropy compromise programming method for parameter identification in the seated driver biomechanical model, Int. J. Ind. Ergon., vol. 34, no. 4, pp. 307–318, 2004. DOI: 10.1016/j.ergon.2004.04.010.
  • R. Muksian, and C. D. Nash, Jr, A model for the response of seated humans to sinusoidal displacements of the seat, J. Biomech., vol. 7, no. 3, pp. 209–215, 1974. DOI: 10.1016/0021-9290(74)90011-6.
  • A. Afkar, I. Javanshir, M. Taghi Ahmadian, and H. Ahmadi, Optimization of a passenger occupied seat with suspension system exposed to vertical vibrations using genetic algorithms, J. Vibroeng., vol. 15, pp. 979–991, 2013.
  • J. Rosen, and M. Arcan, Modeling the human body/seat system in a vibration environment, J. Biomech. Eng., vol. 125, no. 2, pp. 223–231, 2003. DOI: 10.1115/1.1559894.
  • M. K. Patil, and M. Palanichamy, A mathematical model of tractor-occupant system with a new seat suspension for minimization of vibration response, Appl. Math. Modell., vol. 12, no. 1, pp. 63–71, 1988. DOI: 10.1016/0307-904X(88)90024-8.
  • W. Qassem, and M. Othman, Vibration effects on setting pregnant women—subjects of various masses, J. Biomech., vol. 29, no. 4, pp. 493–501, 1996. DOI: 10.1016/0021-9290(95)00074-7.
  • Z. Qiu, and X. Wang, Comparison of dynamic response of structures with uncertain-but-bounded parameters using non-probabilistic interval analysis method and probabilistic approach, Int. J. Solids Struct., vol. 40, no. 20, pp. 5423–5439, 2003. DOI: 10.1016/S0020-7683(03)00282-8.
  • G. J. Stein, P. Múčka, R. Chmúrny, B. Hinz, and R. Blüthner, Measurement and modelling of x-direction apparent mass of the seated human body–cushioned seat system, J Biomech., vol. 40, no. 7, pp. 1493–1503, 2007. DOI: 10.1016/j.jbiomech.2006.06.012.
  • C. Su-Huan, L. Zhong-Sheng, and Z. Zong-Fen, Random vibration analysis for large-scale structures with random parameters, Comput. Struct., vol. 43, no. 4, pp. 681–685, 1992. DOI: 10.1016/0045-7949(92)90509-X.
  • C. Soize, Stochastic modeling of uncertainties in computational structural dynamics—recent theoretical advances, J. Sound Vibr., vol. 332, no. 10, pp. 2379–2395, 2013. DOI: 10.1016/j.jsv.2011.10.010.
  • R. E. Moore, Interval Analysis, vol. 4, Prentice-Hall, Englewood Cliffs, NJ, Philadelphia, 1966.
  • R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval Analysis, SIAM, 2009.
  • G. Muscolino, G. Ricciardi, and N. Impollonia, Improved dynamic analysis of structures with mechanical uncertainties under deterministic input, Probab. Eng. Mech., vol. 15, no. 2, pp. 199–212, 2000. DOI: 10.1016/S0266-8920(99)00021-1.
  • N. Impollonia, and G. Muscolino, Interval analysis of structures with uncertain-but-bounded axial stiffness, Comput. Methods Appl. Mech. Eng., vol. 200, no. 21–22, pp. 1945–1962, 2011. DOI: 10.1016/j.cma.2010.07.019.
  • G. Muscolino, and A. Sofi, Stochastic analysis of structures with uncertain-but-bounded parameters via improved interval analysis, Probab. Eng. Mech., vol. 28, pp. 152–163, 2012. DOI: 10.1016/j.probengmech.2011.08.011.
  • A. Guerine, AEl. Hami, L. Walha, T. Fakhfakh, and M. Haddar, Dynamic response of wind turbine gear system with uncertain-but-bounded parameters using interval analysis method, Renewable Energy, vol. 113, pp. 679–687, 2017. DOI: 10.1016/j.renene.2017.06.028.
  • R. Govindan, V. Saran, and S. Harsha, Low-frequency vibration analysis of human body in semi-supine posture exposed to vertical excitation, Eur. J. Mech.-A/Solids, vol. 80, pp. 103906, 2020. DOI: 10.1016/j.euromechsol.2019.103906.
  • E. Kim, M. Fard, and K. Kato, A seated human model for predicting the coupled human-seat transmissibility exposed to fore-aft whole-body vibration, Appl. Ergon., vol. 84, pp. 102929, 2020. DOI: 10.1016/j.apergo.2019.102929.
  • D. Tao, J. Zeng, K. Liu, and X. Qu, Effects of control-to-display gain and operation precision requirement on touchscreen operations in vibration environments, Appl. Ergon., vol. 91, pp. 103293, 2021. DOI: 10.1016/j.apergo.2020.103293.
  • N. J. Mansfield, and G. Aggarwal, Whole-body vibration experienced by pilots, passengers and crew in fixed-wing aircraft: A state-of-the-science review, Vibration, vol. 5, no. 1, pp. 110–120, 2022. DOI: 10.3390/vibration5010007.
  • F. Lo Iacono, A. Alaimo, A. Esposito, G. Navarra, and C. Orlando, An anthropometric 4-DOF vibration model with uncertain parameters for air transportation, AIP Conference Proceedings, Vol. 2293, No. 1, p. 200008. DOI: 10.1063/5.0027753. AIP Publishing LLC.
  • G. Muscolino, R. Santoro, and A. Sofi, Explicit frequency response functions of discretized structures with uncertain parameters, Comput. Struct., vol. 133, pp. 64–78, 2014. DOI: 10.1016/j.compstruc.2013.11.007.
  • W. Abbas, O. B. Abouelatta, M. El-Azab, M. Elsaidy, and A. A. Megahed, Optimization of biodynamic seated human models using genetic algorithms, Engineering, vol. 02, no. 09, pp. 710–719, 2010. DOI: 10.4236/eng.2010.29092.
  • Y. Z. Arslan, Experimental assessment of lumped-parameter human body models exposed to whole body vibration, J. Mech. Med. Biol., vol. 15, no. 03, pp. 1550023, 2015. DOI: 10.1142/S0219519415500232.
  • Y. Wan, and J. M. Schimmels, Optimal seat suspension design based on minimum simulated subjective response, J. Biomech. Eng., vol. 119, no. 4, pp. 409–416, 1997. DOI: 10.1115/1.2798287.
  • H. Yazici, and M. Sever, Observer based optimal vibration control of a full aircraft system having active landing gears and biodynamic pilot model, Shock Vibr., vol. 2016, pp. 1–20, 2016. DOI: 10.1155/2016/2150493.
  • H. J. Singh, and N. M. Wereley, Biodynamic model of a seated occupant exposed to intense impacts, AIAA J., vol. 53, no. 2, pp. 426–435, 2015. DOI: 10.2514/1.J053193.
  • X. Liu, et al., Biodynamic response and injury estimation of ship personnel to ship shock motion induced by underwater explosion, in Proceeding of 69th Shock and Vibration Symposium, vol. 18, 1998. pp. 1–18.
  • X. X. Bai, S. X. Xu, W. Cheng, and L. J. Qian, On 4-degree-of-freedom biodynamic models of seated occupants: Lumped-parameter modeling, J. Sound Vibr., vol. 402, pp. 122–141, 2017. DOI: 10.1016/j.jsv.2017.05.018.
  • S. Roth, Three-dimensional numerical study of the influence of the thorax positioning submitted to blast loading: Consequences on body trauma, Mech. Adv. Mater. Struct., vol. 27, no. 5, pp. 396–402, 2020. DOI: 10.1080/15376494.2018.1474304.
  • R. L. Muhanna, and R. L. Mullen, Uncertainty in mechanics problems—interval–based approach, J. Eng. Mech., vol. 127, no. 6, pp. 557–566, 2001. DOI: 10.1061/(ASCE)0733-9399(2001)127:6(557).
  • Z. Qiu, Y. Xia, and J. Yang, The static displacement and the stress analysis of structures with bounded uncertainties using the vertex solution theorem, Comput. Methods Appl. Mech. Eng., vol. 196, no. 49–52, pp. 4965–4984, 2007. DOI: 10.1016/j.cma.2007.06.022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.