337
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

A quasi-3D layer-wise finite element model for vibroacoustic analysis of finite sandwich plates with frequency-dependent viscoelastic core

&
Pages 4419-4429 | Received 21 Apr 2022, Accepted 23 Jun 2022, Published online: 09 Jul 2022

References

  • C. Chantalakhana and R. Stanway, Active constrained layer damping of clamped-clamped plate vibrations, J. Sound Vib., vol. 241, no. 5, pp. 755–777, 2001. DOI: 10.1006/jsvi.2000.3317.
  • M.D. Rao, Recent applications of viscoelastic damping for noise control in automobiles and commercial airplanes, J. Sound Vib., vol. 262, no. 3, pp. 457–474, 2003. DOI: 10.1016/S0022-460X(03)00106-8.
  • R. Fan, G. Meng, J. Yang, and C. He, Experimental study of the effect of viscoelastic damping materials on noise and vibration reduction within railway vehicles, J. Sound Vib., vol. 319, no. 1–2, pp. 58–76, 2009. DOI: 10.1016/j.jsv.2008.03.071.
  • K. Bouayed and M.A. Hamdi, Finite element analysis of the dynamic behavior of a laminated windscreen with frequency dependent viscoelastic core, J. Acoust. Soc. Am., vol. 132, no. 2, pp. 757–766, 2012. DOI: 10.1121/1.4733554.
  • H. Zhang, X. Ding, H. Li, and M. Xiong, Multi-scale structural topology optimization of free-layer damping structures with damping composite materials, Compos. Struct., vol. 212, pp. 609–624, 2019. DOI: 10.1016/j.compstruct.2019.01.059.
  • İ. Yılmaz, E. Arslan, and K. Çavdar, Experimental and numerical investigation of sound radiation from thin metal plates with different thickness values of free layer damping layers, Acoust. Aust., vol. 49, no. 3, pp. 459–472, 2021. DOI: 10.1007/s40857-021-00241-6.
  • M. Martinez-Agirre and M.J. Elejabarrieta, Dynamic characterization of high damping viscoelastic materials from vibration test data, J. Sound Vib., vol. 330, no. 16, pp. 3930–3943, 2011. DOI: 10.1016/j.jsv.2011.03.025.
  • X.Q. Zhou, D.Y. Yu, X.Y. Shao, S.Q. Zhang, and S. Wang, Research and applications of viscoelastic vibration damping materials: A review, Compos. Struct., vol. 136, pp. 460–480, 2016. DOI: 10.1016/j.compstruct.2015.10.014.
  • F. Renaud, J.-L. Dion, G. Chevallier, I. Tawfiq, and R. Lemaire, A new identification method of viscoelastic behavior: Application to the generalized Maxwell model, Mech. Syst. Signal Process., vol. 25, no. 3, pp. 991–1010, 2011. DOI: 10.1016/j.ymssp.2010.09.002.
  • S.-Y. Kim and D.-H. Lee, Identification of fractional-derivative-model parameters of viscoelastic materials from measured FRFs, J. Sound Vib., vol. 324, no. 3–5, pp. 570–586, 2009. DOI: 10.1016/j.jsv.2009.02.040.
  • M.A. Trindade, A. Benjeddou, and R. Ohayon, Modeling of frequency-dependent viscoelastic materials for active-passive vibration damping, J. Vib. Acoust., vol. 122, no. 2, pp. 169–174, 2000. DOI: 10.1115/1.568429.
  • Y. Wang and D.J. Inman, Finite element analysis and experimental study on dynamic properties of a composite beam with viscoelastic damping, J. Sound Vib., vol. 332, no. 23, pp. 6177–6191, 2013. DOI: 10.1016/j.jsv.2013.06.016.
  • H. Hu, S. Belouettar, M. Potier-Ferry, and E. Daya, Review and assessment of various theories for modeling sandwich composites, Compos. Struct., vol. 84, no. 3, pp. 282–292, 2008. DOI: 10.1016/j.compstruct.2007.08.007.
  • R.A.S. Moreira and J. Dias Rodrigues, A layerwise model for thin soft core sandwich plates, Comput. Struct., vol. 84, no. 19–20, pp. 1256–1263, 2006. DOI: 10.1016/j.compstruc.2006.01.020.
  • A.J.M. Ferreira, A.L. Araújo, A.M.A. Neves, J.D. Rodrigues, E. Carrera, M. Cinefra, and C.M. Mota Soares, A finite element model using a unified formulation for the analysis of viscoelastic sandwich laminates, Compos. Part B: Eng., vol. 45, no. 1, pp. 1258–1264, 2013. DOI: 10.1016/j.compositesb.2012.05.012.
  • E. Carrera, M. Cinefra, M. Petrolo, and E. Zappino, Finite Element Analysis of Structures through Unified Formulation, Wiley, Chichester, 2014.
  • E. Carrera and A. Ciuffreda, A unified formulation to assess theories of multilayered plates for various bending problems, Compos. Struct., vol. 69, no. 3, pp. 271–293, 2005. DOI: 10.1016/j.compstruct.2004.07.003.
  • E. Carrera, Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking, ARCO, vol. 10, no. 3, pp. 215–296, 2003. DOI: 10.1007/BF02736224.
  • B. Liu, L. Zhao, A.J.M. Ferreira, Y.F. Xing, A.M.A. Neves, and J. Wang, Analysis of viscoelastic sandwich laminates using a unified formulation and a differential quadrature hierarchical finite element method, Compos. Part. B: Eng., vol. 110, pp. 185–192, 2017. DOI: 10.1016/j.compositesb.2016.11.028.
  • M. Cinefra, A.G. de Miguel, M. Filippi, C. Houriet, A. Pagani, and E. Carrera, Homogenization and free-vibration analysis of elastic metamaterial plates by Carrera unified formulation finite elements, Mech. Adv. Mater. Struct., vol. 28, no. 5, pp. 476–485, 2021. DOI: 10.1080/15376494.2019.1578005.
  • M. Cinefra, M.C. Moruzzi, S. Bagassi, E. Zappino, and E. Carrera, Vibro-acoustic analysis of composite plate-cavity systems via CUF finite elements, Compos. Struct., vol. 259, 2021. DOI: 10.1016/j.compstruct.2020.113428.
  • J.S. Moita, A.L. Araújo, V.F. Correia, C.M. Mota Soares, and J. Herskovits, Active-passive damping in functionally graded sandwich plate/shell structures, Compos. Struct., vol. 202, pp. 324–332, 2018. DOI: 10.1016/j.compstruct.2018.01.089.
  • R. Lewandowski, P. Litewka, and P. Wielentejczyk, Free vibrations of laminate plates with viscoelastic layers using the refined zig-zag theory – Part 1. Theoretical background, Compos. Struct., vol. 278, 2021. DOI: 10.1016/j.compstruct.2021.114547.
  • R. Lewandowski, P. Wielentejczyk, and P. Litewka, Dynamic characteristics of multi-layered, viscoelastic beams using the refined zig-zag theory, Compos. Struct., vol. 259, 2021. DOI: 10.1016/j.compstruct.2020.113212.
  • M. D’Ottavio, A. Krasnobrizha, E. Valot, O. Polit, R. Vescovini, and L. Dozio, Dynamic response of viscoelastic multiple-core sandwich structures, J. Sound Vib., vol. 491, 2021. DOI: 10.1016/j.jsv.2020.115753.
  • C.W. Isaac, M. Pawelczyk, and S. Wrona, Comparative study of sound transmission losses of sandwich composite double panel walls, Appl. Sci., vol. 10, no. 4, pp. 1543, 2020. DOI: 10.3390/app10041543.
  • A. Loredo, A. Plessy, A. El Hafidi, and N. Hamzaoui, Numerical vibroacoustic analysis of plates with constrained-layer damping patches, J. Acoust. Soc. Am., vol. 129, no. 4, pp. 1905–1918, 2011. DOI: 10.1121/1.3546096.
  • W. Larbi, J.F. Deü, R. Ohayon, and R. Sampaio, Coupled FEM/BEM for control of noise radiation and sound transmission using piezoelectric shunt damping, Appl. Acoust., vol. 86, pp. 146–153, 2014. DOI: 10.1016/j.apacoust.2014.02.003.
  • W. Larbi, Numerical modeling of sound and vibration reduction using viscoelastic materials and shunted piezoelectric patches, Comput. Struct., vol. 232, 2020. DOI: 10.1016/j.compstruc.2017.07.024.
  • W. Larbi, J.F. Deü, and R. Ohayon, Vibroacoustic analysis of double-wall sandwich panels with viscoelastic core, Comput. Struct., vol. 174, pp. 92–103, 2016. DOI: 10.1016/j.compstruc.2015.09.012.
  • S. Assaf and M. Guerich, Influence of temperature on sound transmission through viscoelastic sandwich plates, J. Acoust. Soc. Am., vol. 123, no. 5, pp. 3729–3729, 2008. DOI: 10.1121/1.2935220.
  • S. Assaf, M. Guerich, and P. Cuvelier, Vibration and acoustic response of damped sandwich plates immersed in a light or heavy fluid, Comput. Struct., vol. 88, no. 13–14, pp. 870–878, 2010. DOI: 10.1016/j.compstruc.2010.04.006.
  • M. Guerich and S. Assaf, Optimization of noise transmission through sandwich structures, J. Vib. Acoust., vol. 135, 2013. DOI: 10.1115/1.4024216.
  • S. Du, F. An, and B. Liu, On the sound transmission loss of finite plates with constrained viscoelastic layer, Appl. Acoust., vol. 149, pp. 32–38, 2019. DOI: 10.1016/j.apacoust.2019.01.010.
  • M.C. Junger and D. Feit, Sound, Structures, and Their Interaction, Vol. 225, MIT press, Cambridge, MA, 1986.
  • S. Oskooei and J.S. Hansen, Higher-order finite element for sandwich plates, AIAA J., vol. 38, no. 3, pp. 525–533, 2000. DOI: 10.2514/2.991.
  • R.M. Christensen, Mechanics of Composite Materials, Dover Publications, INC., New York, 2005.
  • S. Ren, G. Zhao, and S. Zhang, A layerwise finite element formulation for vibration and damping analysis of sandwich plate with moderately thick viscoelastic core, Mech. Adv. Mater. Struc., vol. 27, no. 14, pp. 1201–1212, 2020. DOI: 10.1080/15376494.2018.1504360.
  • A. Nayak, S. Moy, and R. Shenoi, Free vibration analysis of composite sandwich plates based on Reddy's higher-order theory, Compos. Part B: Eng., vol. 33, no. 7, pp. 505–519, 2002. DOI: 10.1016/S1359-8368(02)00035-5.
  • A.S. Sayyad and Y.M. Ghugal, On the free vibration analysis of laminated composite and sandwich plates: A review of recent literature with some numerical results, Compos. Struct., vol. 129, pp. 177–201, 2015. DOI: 10.1016/j.compstruct.2015.04.007.
  • C. Lee and K. Kondo, Noise transmission loss of sandwich plates with viscoelastic core. Proceedings of 40th Structures, Structural Dynamics, and Materials Conference and Exhibit, St Louis.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.