336
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Exact modal analysis of multilayered FG-CNT plate assemblies using the dynamic stiffness method

ORCID Icon & ORCID Icon
Pages 4501-4520 | Received 22 Apr 2022, Accepted 29 Jun 2022, Published online: 22 Jul 2022

References

  • W. H. Wittrick and F. W. Williams, Buckling and vibration of anisotropic or isotropic plate assemblies under combined loadings, Int. J. Mech. Sci., vol. 16, no. 4, pp. 209–239, 1974. DOI: 10.1016/0020-7403(74)90069-1.
  • M. Boscolo and J. R. Banerjee, Dynamic stiffness formulation for composite Mindlin plates for exact modal analysis of structures. Part I: Theory, Comput. Struct., vol. 96-97, pp. 61–73, 2012. DOI: 10.1016/j.compstruc.2012.01.002.
  • F. A. Fazzolari, M. Boscolo, and J. R. Banerjee, An exact dynamic stiffness element using a higher order shear deformation theory for free vibration analysis of composite plate assemblies, Compos. Struct., vol. 96, pp. 262–278, 2013. DOI: 10.1016/j.compstruct.2012.08.033.
  • I. Chopra, Vibration of stepped thickness plates, Int. J. Mech. Sci., vol. 16, no. 6, pp. 337–344, 1974. DOI: 10.1016/0020-7403(74)90007-1.
  • S. J. Guo, A. J. Keane, and M. Moshrefi-Torbati, Vibration analysis of stepped thickness plates, J. Sound Vib., vol. 204, no. 4, pp. 645–657, 1997. DOI: 10.1006/jsvi.1997.0955.
  • J. Yuan and S. M. Dickinson, The flexural vibration of rectangular plate systems approached by using artificial springs in the Rayleigh-Ritz method, J. Sound Vib., vol. 159, no. 1, pp. 39–55, 1992. DOI: 10.1016/0022-460X(92)90450-C.
  • Y. Xiang and G. W. Wei, Exact solutions for buckling and vibration of stepped rectangular Mindlin plates, Int. J. Solids Struct., vol. 41, no. 1, pp. 279–294, 2004. DOI: 10.1016/j.ijsolstr.2003.09.007.
  • A. Samanta and M. Mukhopadhyay, Finite element static and dynamic analyses of folded plates, Eng. Struct., vol. 21, no. 3, pp. 277–287, 1999. DOI: 10.1016/S0141-0296(97)90172-3.
  • S. Y. Lee and S. C. Wooh, Finite element vibration analysis of composite box structures using the high order plate theory, J. Sound Vib., vol. 277, no. 4-5, pp. 801–814, 2004. DOI: 10.1016/j.jsv.2003.09.024.
  • L. X. Peng, Free vibration analysis of symmetrically laminated folded plate structures using an element-free Galerkin method, Math. Prob. Eng., vol. 2015, pp. 1–13, 2015. DOI: 10.1155/2015/124296.
  • S. Kumar and P. Jana, Application of dynamic stiffness method for accurate free vibration analysis of sigmoid and exponential functionally graded rectangular plates, Int. J. Mech. Sci., vol. 163, p. 105105, 2019. DOI: 10.1016/j.ijmecsci.2019.105105.
  • S. Iijima, Helical microtubules of graphitic carbon, Nature, vol. 354, no. 6348, pp. 56–58, 1991. DOI: 10.1038/354056a0.
  • E. T. Thostenson, Z. Ren, and T. W. Chou, Advances in the science and technology of carbon nanotubes and their composites: A review, Compos. Sci. Technol., vol. 61, no. 13, pp. 1899–1912, 2001. DOI: 10.1016/S0266-3538(01)00094-X.
  • P. J. F. Harris, Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century, Am. J. Phys., vol. 72, pp. 414–416, 2004.
  • B. Fiedler, F. H. Gojny, M. H. G. Wichmann, M. C. M. Nolte, and K. Schulte, Fundamental aspects of nano-reinforced composites, Compos. Sci. Technol., vol. 66, no. 16, pp. 3115–3125, 2006. DOI: 10.1016/j.compscitech.2005.01.014.
  • L. Ci and J. Bai, The reinforcement role of carbon nanotubes in epoxy composites with different matrix stiffness, Compos. Sci. Technol., vol. 66, no. 3–4, pp. 599–603, 2006. DOI: 10.1016/j.compscitech.2005.05.020.
  • P. C. Ma, S. Y. Mo, B. Z. Tang, and J. K. Kim, Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites, Carbon., vol. 48, no. 6, pp. 1824–1834, 2010. DOI: 10.1016/j.carbon.2010.01.028.
  • N. D. Dat, N. V. Thanh, V. MinhAnh, and N. D. Duc, Vibration and nonlinear dynamic analysis of sandwich FG-CNTRC plate with porous core layer, Mech. Adv. Mater. Struct., vol. 29, no. 10, pp. 1431–1448, 2022. DOI: 10.1080/15376494.2020.1822476.
  • P. Maji, M. Rout, and A. Karmakar, The free vibration response of temperature-dependent carbon nanotube-reinforced composite stiffened plate, Mech. Adv. Mater. Struct., vol. 29, pp. 2555–2569, 2021. DOI: 10.1080/15376494.2020.1870782.
  • H. Cheng and LiC Jiang, Y, Free vibration analysis of rotating pre-twisted ceramic matrix carbon nanotubes reinforced blades, Mech. Adv. Mater. Struct., vol. 29, pp. 2040–2052, 2020. DOI: 10.1080/15376494.2020.1849881.
  • J. Gou, B. Minaie, B. Wang, Z. Liang, and C. Zhang, Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites, Comput. Mater. Sci., vol. 31, no. 3–4, pp. 225–236, 2004. DOI: 10.1016/j.commatsci.2004.03.002.
  • H. S. Shen, Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments, Compos. Struct., vol. 91, no. 1, pp. 9–19, 2009. DOI: 10.1016/j.compstruct.2009.04.026.
  • Z. X. Lei, K. M. Liew, and J. L. Yu, Free vibration analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method in thermal environment, Compos. Struct., vol. 106, pp. 128–138, 2013. DOI: 10.1016/j.compstruct.2013.06.003.
  • L. W. Zhang, W. C. Cui, and K. M. Liew, Vibration analysis of functionally graded carbon nanotube reinforced composite thick plates with elastically restrained edges, Int. J. Mech. Sci., vol. 103, pp. 9–21, 2015. DOI: 10.1016/j.ijmecsci.2015.08.021.
  • L. W. Zhang, Z. X. Lei, and K. M. Liew, Free vibration analysis of functionally graded carbon nanotube-reinforced composite triangular plates using the FSDT and element-free IMLS-Ritz method, Int. J. Mech. Sci., vol. 120, pp. 189–199, 2015. DOI: 10.1016/j.compstruct.2014.10.009.
  • P. Zhu, Z. X. Lei, and K. M. Liew, Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory, Compos. Struct., vol. 94, no. 4, pp. 1450–1460, 2012. DOI: 10.1016/j.compstruct.2011.11.010.
  • P. Phung-Van, M. Abdel-Wahab, K. M. Liew, S. P. A. Bordas, and H. Nguyen-Xuan, Isogeometric analysis of functionally graded carbon nanotube-reinforced composite plates using higher-order shear deformation theory, Compos. Struct., vol. 123, pp. 137–149, 2015. DOI: 10.1016/j.compstruct.2014.12.021.
  • N. D. Duc, J. Lee, T. Nguyen-Thoi, and P. T. Thang, Static response and free vibration of functionally graded carbon nanotube-reinforced composite rectangular plates resting on Winkler–Pasternak elastic foundation, Aerosp. Sci. Technol., vol. 68, pp. 391–402, 2017. DOI: 10.1016/j.ast.2017.05.032.
  • R. Ansari, J. Torabi, and A. H. Shakouri, Vibration analysis of functionally graded carbon nanotube-reinforced composite elliptical plates using a numerical strategy, Aerosp. Sci. Technol., vol. 60, pp. 152–161, 2017. DOI: 10.1016/j.ast.2016.11.004.
  • P. Malekzadeh and A. R. Zarei, Free vibration of quadrilateral laminated plates with carbon nanotube reinforced composite layers, Thin-Walled Struct., vol. 82, pp. 221–231, 2014. DOI: 10.1016/j.tws.2014.04.016.
  • M. H. Yas, A. Pourasghar, S. Kamarian, and M. Heshmati, Three-dimensional free vibration analysis of functionally graded nanocomposite cylindrical panels reinforced by carbon nanotube, Mater. Des., vol. 49, pp. 583–590, 2013. DOI: 10.1016/j.matdes.2013.01.001.
  • Z. X. Lei, L. W. Zhang, and K. M. Liew, Free vibration analysis of laminated FG-CNT reinforced composite rectangular plates using the kp-Ritz method, Compos. Struct., vol. 127, pp. 245–259, 2015. DOI: 10.1016/j.compstruct.2015.03.019.
  • D. Onvani, A. Jafari, and M. B. Dehkordi, Carrera unified formulation for bending and free vibration analysis of sandwich plate with FG-CNT faces considering the both soft and stiff cores, Mech. Adv. Mater. Struct., pp. 1–15, 2021. DOI: 10.1080/15376494.2021.1983899.
  • J. R. Banerjee, Dynamic stiffness formulation for structural elements: A general approach, Comput. Struct., vol. 63, no. 1, pp. 101–103, 1997. DOI: 10.1016/S0045-7949(96)00326-4.
  • A. Pagani, M. Boscolo, J. R. Banerjee, and E. Carrera, Exact dynamic stiffness elements based on one-dimensional higher-order theories for free vibration analysis of solid and thin-walled structures, J. Sound Vib., vol. 332, no. 23, pp. 6104–6127, 2013. DOI: 10.1016/j.jsv.2013.06.023.
  • M. Boscolo and J. R. Banerjee, Dynamic stiffness elements and their applications for plates using first order shear deformation theory, Comput. Struct., vol. 89, no. 3–4, pp. 395–410, 2011. DOI: 10.1016/j.compstruc.2010.11.005.
  • A. Pagani, E. Carrera, M. Boscolo, and J. R. Banerjee, Refined dynamic stiffness elements applied to free vibration analysis of generally laminated composite beams with arbitrary boundary conditions, Compos. Struct., vol. 110, pp. 305–316, 2014. DOI: 10.1016/j.compstruct.2013.12.010.
  • A. Pagani, E. Carrera, J. R. Banerjee, P. H. Cabral, G. Caprio, and A. Prado, Free vibration analysis of composite plates by higher-order 1D dynamic stiffness elements and experiments, Compos. Struct., vol. 118, pp. 654–663, 2014. DOI: 10.1016/j.compstruct.2014.08.020.
  • S. Kumar, V. Ranjan, and P. Jana, Free vibration analysis of thin functionally graded rectangular plates using the dynamic stiffness method, Compos. Struct., vol. 197, pp. 39–53, 2018. DOI: 10.1016/j.compstruct.2018.04.085.
  • W. H. Wittrick and F. W. Williams, A general algorithm for computing natural frequencies of elastic structures, Q. J. Mech. Appl. Math., vol. 24, no. 3, pp. 263–284, 1971. DOI: 10.1093/qjmam/24.3.263.
  • Y. Han and J. Elliott, Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites, Comput. Mater. Sci., vol. 39, no. 2, pp. 315–323, 2007. DOI: 10.1016/j.commatsci.2006.06.011.
  • A. A. Daikh, M. S. A. Houari, M. O. Belarbi, S. A. Mohamed, and M. A. Eltaher, Static and dynamic stability responses of multilayer functionally graded carbon nanotubes reinforced composite nanoplates via quasi 3D nonlocal strain gradient theory, Def. Technol., 2021. DOI: 10.1016/j.dt.2021.09.011.
  • J. N. Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press, London, 2003.
  • C. L. Zhang and H. S. Shen, Temperature-dependent elastic properties of single-walled carbon nanotubes: Prediction from molecular dynamics simulation, Appl. Phys. Lett., vol. 89, no. 8, p. 081904, 2006. DOI: 10.1063/1.2336622.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.