166
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Closed-form analytical solutions for predicting stress transfers and thermo-elastic properties of short fiber composites

, , &
Pages 4731-4751 | Received 28 Feb 2022, Accepted 19 Jul 2022, Published online: 01 Aug 2022

References

  • P. Singh, and M. Kamal, The effect of processing variables on microstructure of injection molded short fiber reinforced polypropylene composites, Polym. Compos., vol. 10, no. 5, pp. 344–351, 1989. DOI: 10.1002/pc.750100511.
  • M. Gupta, and K. Wang, Fiber orientation and mechanical properties of short‐fiber‐reinforced injection‐molded composites: Simulated and experimental results, Polym. Compos., vol. 14, no. 5, pp. 367–382, 1993. DOI: 10.1002/pc.750140503.
  • S.-Y. Fu, B. Lauke, E. Mäder, C.-Y. Yue, and X. Hu, Tensile properties of short-glass-fiber-and short-carbon-fiber-reinforced polypropylene composites, Compos Part A Appl Sci Manuf., vol. 31, no. 10, pp. 1117–1125, 2000. DOI: 10.1016/S1359-835X(00)00068-3.
  • S. Kammoun, I. Doghri, L. Adam, G. Robert, and L. Delannay, First pseudo-grain failure model for inelastic composites with misaligned short fibers, Compos Part A Appl Sci Manuf., vol. 42, no. 12, pp. 1892–1902, 2011. DOI: 10.1016/j.compositesa.2011.08.013.
  • K. Wu, L. Wan, H. Zhang, and D. Yang, Numerical simulation of the injection molding process of short fiber composites by an integrated particle approach, Int J Adv Manuf Technol., vol. 97, no. 9–12, pp. 3479–3491, 2018. DOI: 10.1007/s00170-018-2204-6.
  • G. Yang, M. Park, and S.-J. Park, Recent progresses of fabrication and characterization of fibers-reinforced composites: A review, Compos. Commun., vol. 14, pp. 34–42, 2019. DOI: 10.1016/j.coco.2019.05.004.
  • G. He, Development of an elastothermoviscoplasticity damage model for injection molded short fiber reinforced thermoplastics with anisotropic damage evolutions, Mech. Adv. Mater. Struct., vol. 26, no. 22, pp. 1889–1901, 2019. DOI: 10.1080/15376494.2018.1455931.
  • J. Corum, R. Battiste, M. Ruggles, and W. Ren, Durability-based design criteria for a chopped-glass-fiber automotive structural composite, Compos. Sci. Technol., vol. 61, no. 8, pp. 1083–1095, 2001. DOI: 10.1016/S0266-3538(00)00242-6.
  • K. Friedrich, and A.A. Almajid, Manufacturing aspects of advanced polymer composites for automotive applications, Appl Compos Mater., vol. 20, no. 2, pp. 107–128, 2013. DOI: 10.1007/s10443-012-9258-7.
  • F.V. Ferreira, I.F. Pinheiro, S.F. de Souza, L.H. Mei, and L.M. Lona, Polymer composites reinforced with natural fibers and nanocellulose in the automotive industry: A short review, J. Compos. Sci., vol. 3, no. 2, pp. 51, 2019. DOI: 10.3390/jcs3020051.
  • H. Jariwala, and P. Jain, A review on mechanical behavior of natural fiber reinforced polymer composites and its applications, J. Reinf. Plast. Compos., vol. 38, no. 10, pp. 441–453, 2019. DOI: 10.1177/0731684419828524.
  • V. Komarov, E. Kurkin, M. Spirina, and E. Kishov, Estimation of weight efficiency of topologically optimal aerospace structures, in 2019 9th International Conference on Recent Advances in Space Technologies (RAST), 2019. IEEE, pp. 95–101. DOI: 10.1109/RAST.2019.8767783.
  • G.C. Jacob, J.M. Starbuck, J.F. Fellers, S. Simunovic, and R.G. Boeman, Crashworthiness of various random chopped carbon fiber reinforced epoxy composite materials and their strain rate dependence, J. Appl. Polym. Sci., vol. 101, no. 3, pp. 1477–1486, 2006. DOI: 10.1002/app.24224.
  • M. Nciri, D. Notta-Cuvier, F. Lauro, F. Chaari, Y. Maalej, and B. Zouari, Viscoelastic–viscoplastic model for short-fiber-reinforced composites with complex fiber orientation, Mech. Adv. Mater. Struct., vol. 26, no. 10, pp. 842–853, 2019. DOI: 10.1080/15376494.2018.1430264.
  • P. Anandakumar, M.V. Timmaraju, and R. Velmurugan, Development of efficient short/continuous fiber thermoplastic composite automobile suspension upper control arm, Mater. Today: Proc., vol. 39, pp. 1187–1191, 2021. DOI: 10.1016/j.matpr.2020.03.543.
  • J. Thomason, The influence of fibre length and concentration on the properties of glass fibre reinforced polypropylene: 5. Injection moulded long and short fibre PP, Compos Part A Appl Sci Manuf., vol. 33, no. 12, pp. 1641–1652, 2002. DOI: 10.1016/S1359-835X(02)00179-3.
  • J.F. Rakow, and A.M. Waas, The effective isotropic moduli of random fibrous composites, platelet composites, and foamed solids, Mech. Adv. Mater. Struct., vol. 11, no. 2, pp. 151–173, 2004. DOI: 10.1080/15376490490277286.
  • L. McCartney, Maxwell's far-field methodology predicting elastic properties of multiphase composites reinforced with aligned transversely isotropic spheroids, Philos. Mag., vol. 90, no. 31–32, pp. 4175–4207, 2010. DOI: 10.1080/14786431003752142.
  • N.G. Karsli, and A. Aytac, Tensile and thermomechanical properties of short carbon fiber reinforced polyamide 6 composites, Compos B Eng., vol. 51, pp. 270–275, 2013. DOI: 10.1016/j.compositesb.2013.03.023.
  • S.K. Gulrez, M.A. Mohsin, and S. Al-Zahrani, Studies on crystallization kinetics, microstructure and mechanical properties of different short carbon fiber reinforced polypropylene (SCF/PP) composites, J Polym Res., vol. 20, no. 10, pp. 1–9, 2013. DOI: 10.1007/s10965-013-0265-7.
  • S. Velumani, P. Navaneetha Krishnan, and S. Jayabal, Mathematical modeling and optimization of mechanical properties of short coir fiber-reinforced vinyl ester composite using genetic algorithm method, Mech. Adv. Mater. Struct., vol. 21, no. 7, pp. 559–565, 2014. DOI: 10.1080/15376494.2012.699599.
  • K. Babu, P. Mohite, and C. Upadhyay, Development of an RVE and its stiffness predictions based on mathematical homogenization theory for short fibre composites, Int. J. Solids Struct., vol. 130–131, pp. 80–104, 2018. DOI: 10.1016/j.ijsolstr.2017.10.011.
  • W. Shu, and I. Stanciulescu, Multiscale homogenization method for the prediction of elastic properties of fiber-reinforced composites, Int. J. Solids Struct., vol. 203, pp. 249–263, 2020. DOI: 10.1016/j.ijsolstr.2020.08.009.
  • E. Rashidinejad, H. Ahmadi, M. Hajikazemi, and W. Van Paepegem, Modeling of geometric configuration and fiber interactions in short fiber reinforced composites via new modified Eshelby tensors and enhanced mean-field homogenization, Mech. Mater., vol. 162, pp. 104059, 2021. DOI: 10.1016/j.mechmat.2021.104059.
  • M.S.H. Al-Furjan, Mostafa Habibi, Jing Ni, Dong won Jung, and Abdelouahed Tounsi, Frequency simulation of viscoelastic multi-phase reinforced fully symmetric systems, Eng Comput., pp. 1–17, 2020. DOI: 10.1007/s00366-020-01200-x.
  • M.S.H. Al-Furjan, et al., A computational framework for propagated waves in a sandwich doubly curved nanocomposite panel, Eng Comput., vol. 38, no. 2, pp. 1679–1618, 2022. DOI: 10.1007/s00366-020-01130-8.
  • R. Zerrouki, Effect of nonlinear FG-CNT distribution on mechanical properties of functionally graded nano-composite beam, Struct Eng Mech An Inter J., vol. 78, no. 2, pp. 117–124, 2021.
  • A. Bernasconi, F. Cosmi, and D. Dreossi, Local anisotropy analysis of injection moulded fibre reinforced polymer composites, Compos. Sci. Technol., vol. 68, no. 12, pp. 2574–2581, 2008. DOI: 10.1016/j.compscitech.2008.05.022.
  • D. Lee, Local anisotropy analysis based on the Mori-Tanaka model for multiphase composites with fiber length and orientation distributions, Compos B Eng., vol. 148, pp. 227–234, 2018. DOI: 10.1016/j.compositesb.2018.04.050.
  • C. Nony-Davadie, L. Peltier, Y. Chemisky, B. Surowiec, and F. Meraghni, Mechanical characterization of anisotropy on a carbon fiber sheet molding compound composite under quasi-static and fatigue loading, J. Compos. Mater., vol. 53, no. 11, pp. 1437–1457, 2019. DOI: 10.1177/0021998318804612.
  • A. Jain, Y. Abdin, W. Van Paepegem, I. Verpoest, and S.V. Lomov, Effective anisotropic stiffness of inclusions with debonded interface for Eshelby-based models, Compos. Struct., vol. 131, pp. 692–706, 2015. DOI: 10.1016/j.compstruct.2015.06.007.
  • S.-Y. Fu, and B. Lauke, An analytical characterization of the anisotropy of the elastic modulus of misaligned short-fiber-reinforced polymers, Compos. Sci. Technol., vol. 58, no. 12, pp. 1961–1972, 1998. DOI: 10.1016/S0266-3538(98)00033-5.
  • B. Lauke, and S.-Y. Fu, Strength anisotropy of misaligned short-fibre-reinforced polymers, Compos. Sci. Technol., vol. 59, no. 5, pp. 699–708, 1999. DOI: 10.1016/S0266-3538(98)00115-8.
  • M. De Monte, E. Moosbrugger, and M. Quaresimin, Influence of temperature and thickness on the off-axis behaviour of short glass fibre reinforced polyamide 6.6–Quasi-static loading, Compos Part A Appl Sci Manuf., vol. 41, no. 7, pp. 859–871, 2010. DOI: 10.1016/j.compositesa.2010.02.018.
  • S. Mortazavian, and A. Fatemi, Effects of fiber orientation and anisotropy on tensile strength and elastic modulus of short fiber reinforced polymer composites, Compos B Eng., vol. 72, pp. 116–129, 2015. DOI: 10.1016/j.compositesb.2014.11.041.
  • H. Cai, et al., An effective microscale approach for determining the anisotropy of polymer composites reinforced with randomly distributed short fibers, Compos. Struct., vol. 240, pp. 112087, 2020. DOI: 10.1016/j.compstruct.2020.112087.
  • S.-Y. Fu, and B. Lauke, Effects of fiber length and fiber orientation distributions on the tensile strength of short-fiber-reinforced polymers, Compos. Sci. Technol., vol. 56, no. 10, pp. 1179–1190, 1996. DOI: 10.1016/S0266-3538(96)00072-3.
  • D. Dray, P. Gilormini, and G. Régnier, Comparison of several closure approximations for evaluating the thermoelastic properties of an injection molded short-fiber composite, Compos. Sci. Technol., vol. 67, no. 7–8, pp. 1601–1610, 2007. DOI: 10.1016/j.compscitech.2006.07.008.
  • K.J. Meyer, J.T. Hofmann, and D.G. Baird, Prediction of short glass fiber orientation in the filling of an end-gated plaque, Compos Part A Appl Sci Manuf ., vol. 62, pp. 77–86, 2014. DOI: 10.1016/j.compositesa.2013.12.013.
  • S. Kari, H. Berger, and U. Gabbert, Numerical evaluation of effective material properties of randomly distributed short cylindrical fibre composites, Comput. Mater. Sci., vol. 39, no. 1, pp. 198–204, 2007. DOI: 10.1016/j.commatsci.2006.02.024.
  • J. Zhao, D.-X. Su, J-m Yi, G. Cheng, L.-S. Turng, and T. Osswald, The effect of micromechanics models on mechanical property predictions for short fiber composites, Compos. Struct., vol. 244, pp. 112229, 2020. DOI: 10.1016/j.compstruct.2020.112229.
  • Y. Zhong, et al., Elastic properties of injection molded short glass fiber reinforced thermoplastic composites, Compos. Struct., vol. 254, pp. 112850, 2020. DOI: 10.1016/j.compstruct.2020.112850.
  • C.L. Tucker, III, and E. Liang, Stiffness predictions for unidirectional short-fiber composites: Review and evaluation, Compos. Sci. Technol., vol. 59, no. 5, pp. 655–671, 1999. DOI: 10.1016/S0266-3538(98)00120-1.
  • C. Naili, I. Doghri, T. Kanit, M. Sukiman, A. Aissa-Berraies, and A. Imad, Short fiber reinforced composites: Unbiased full-field evaluation of various homogenization methods in elasticity, Compos. Sci. Technol., vol. 187, pp. 107942, 2020. DOI: 10.1016/j.compscitech.2019.107942.
  • T. Mori, and K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metall., vol. 21, no. 5, pp. 571–574, 1973. DOI: 10.1016/0001-6160(73)90064-3.
  • Y. Benveniste, A new approach to the application of Mori-Tanaka's theory in composite materials, Mech. Mater., vol. 6, no. 2, pp. 147–157, 1987. DOI: 10.1016/0167-6636(87)90005-6.
  • O. Pierard, C. Friebel, and I. Doghri, Mean-field homogenization of multi-phase thermo-elastic composites: A general framework and its validation, Compos. Sci. Technol., vol. 64, no. 10–11, pp. 1587–1603, 2004. DOI: 10.1016/j.compscitech.2003.11.009.
  • I. Doghri, L. Brassart, L. Adam, and J.-S. Gérard, A second-moment incremental formulation for the mean-field homogenization of elasto-plastic composites, Int. J. Plast., vol. 27, no. 3, pp. 352–371, 2011. DOI: 10.1016/j.ijplas.2010.06.004.
  • A. Jain, S.V. Lomov, Y. Abdin, I. Verpoest, and W. Van Paepegem, Pseudo-grain discretization and full Mori Tanaka formulation for random heterogeneous media: Predictive abilities for stresses in individual inclusions and the matrix, Compos. Sci. Technol., vol. 87, pp. 86–93, 2013. DOI: 10.1016/j.compscitech.2013.08.009.
  • P.A. Hessman, F. Welschinger, K. Hornberger, and T. Böhlke, On mean field homogenization schemes for short fiber reinforced composites: Unified formulation, application and benchmark, Int. J. Solids Struct., vol. 230–231, pp. 111141, 2021. DOI: 10.1016/j.ijsolstr.2021.111141.
  • H. Cox, The elasticity and strength of paper and other fibrous materials, Br. J. Appl. Phys., vol. 3, no. 3, pp. 72–79, 1952. DOI: 10.1088/0508-3443/3/3/302.
  • T. Clyne, A simple development of the shear lag theory appropriate for composites with a relatively small modulus mismatch, Mater. Sci. Eng.: A., vol. 122, no. 2, pp. 183–192, 1989. DOI: 10.1016/0921-5093(89)90629-1.
  • A.A. Gusev, Controlled accuracy finite element estimates for the effective stiffness of composites with spherical inclusions, Int. J. Solids Struct., vol. 80, pp. 227–236, 2016. DOI: 10.1016/j.ijsolstr.2015.11.006.
  • E. Rashidinejad, and H. Shodja, On the exact nature of the coupled-fields of magneto-electro-elastic ellipsoidal inclusions with non-uniform eigenfields and general anisotropy, Mech. Mater., vol. 128, pp. 89–104, 2019. DOI: 10.1016/j.mechmat.2018.09.007.
  • E. Rashidinejad, and H. Shodja, Novel theories on magneto-electro-elastic ellipsoidal multi-inclusions and inhomogeneities and associated impotent fields, Mech. Mater., vol. 143, pp. 103201, 2020. DOI: 10.1016/j.mechmat.2019.103201.
  • Z. Jiang, X. Liu, G. Li, and J. Lian, A new analytical model for three-dimensional elastic stress field distribution in short fibre composite, Mater. Sci. Eng.: A., vol. 366, no. 2, pp. 381–396, 2004. DOI: 10.1016/j.msea.2003.09.055.
  • Z.-M. Huang, C.-C. Zhang, and Y.-D. Xue, Stiffness prediction of short fiber reinforced composites, Int. J. Mech. Sci., vol. 161, pp. 105068, 2019.
  • H. Shodja, and F. Roumi, Overall behavior of composites with periodic multi-inhomogeneities, Mech. Mater., vol. 37, no. 2–3, pp. 343–353, 2005. DOI: 10.1016/j.mechmat.2003.08.018.
  • E. Rashidinejad, and A.A. Naderi, Analytical study of electro-elastic fields in quantum nanostructure solar cells: The inter-nanostructure couplings and geometrical effects, Acta Mech., vol. 229, no. 7, pp. 3089–3106, 2018. DOI: 10.1007/s00707-018-2152-0.
  • E. Rashidinejad, and H. Shoja, Analytical solutions for electro-elastic fields of periodic quantum nanostructures within transversely isotropic piezoelectric media: Studying the geometry effects, Modares Mech Eng., vol. 15, no. 12, pp. 46–54, 2016.
  • J.A. Nairn, A variational mechanics analysis of the stresses around breaks in embedded fibers, Mech. Mater., vol. 13, no. 2, pp. 131–154, 1992. DOI: 10.1016/0167-6636(92)90042-C.
  • L. McCartney, Analytical model for sliding interfaces associated with fibre fractures or matrix cracks, Comp. Mater. Continua., vol. 35, no. 3, pp. 183–227, 2013.
  • S.G. Advani, and C.L. Tucker, I. I. I., The use of tensors to describe and predict fiber orientation in short fiber composites, J. Rheol., vol. 31, no. 8, pp. 751–784, 1987. DOI: 10.1122/1.549945.
  • Z. Hashin, and B.W. Rosen, The elastic moduli of fiber-reinforced materials, Trans. ASME, J. Appl. Mech., vol. 31, no. 2, pp. 223–232, 1964. DOI: 10.1115/1.3629590.
  • R.A. Schapery, Thermal expansion coefficients of composite materials based on energy principles, J. Compos. Mater., vol. 2, no. 3, pp. 380–404, 1968. DOI: 10.1177/002199836800200308.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.