318
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Experiments and predictive modeling of optimized fiber-reinforced concrete columns having FRP rebars and hoops

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 4913-4932 | Received 15 Jun 2022, Accepted 28 Jul 2022, Published online: 10 Aug 2022

References

  • B. Benmokrane, E. El-Salakawy, A. El-Ragaby, and T. Lackey, Designing and testing of concrete bridge decks reinforced with glass FRP bars, J. Bridge Eng., vol. 11, no. 2, pp. 217–229, 2006. DOI: 10.1061/(ASCE)1084-0702(2006)11:2(217).
  • A. Raza, Q. U. Z. Khan, and A. Ahmad, Numerical investigation of load-carrying capacity of GFRP-reinforced rectangular concrete members using CDP model in ABAQUS, Adv. Civ. Eng., vol. 2019, pp. 1–21, 2019. DOI: 10.1155/2019/1745341.
  • A. Raza, and Q. U. Z. Khan, Experimental and numerical behavior of hybrid fibre reinforced concrete compression members under concentric loading, SN Appl. Sci., vol. 2, no. 4, pp. 1–19, 2020. DOI: 10.1007/s42452-020-2461-5.[Mismatch] InsertedFromOnline]
  • P. Paultre, R. Eid, Y. Langlois, and Y. Levesque, Behavior of steel fibre-reinforced high-strength concrete columns under uniaxial compression, J. Struct. Eng., vol. 136, no. 10, pp. 1225–1235, 2010. DOI: 10.1061/(ASCE)ST.1943-541X.0000211.
  • H. M. U. Aslam, Q. Z. Khan, A. Sami, and A. Raza, Axial compressive behavior of damaged steel and GFRP bars reinforced concrete columns retrofitted with CFRP laminates, Compos. Struct., vol. 258, pp. 113206, 2021. DOI: 10.1016/j.compstruct.2020.113206.
  • A. Raza, M.H. El Ouni, L. Ali, M. Awais, B. Ali, Z. Ahmad, N. B. Kahla, Structural evaluation of recycled aggregate concrete circular columns having FRP rebars and synthetic fibres, Eng. Struct., vol. 250, pp. 113392, 2022. DOI: 10.1016/j.engstruct.2021.113392.
  • A. Raza, Q. Khan, and A. Ahmad, Investigation of HFRC columns reinforced with GFRP bars and spirals under concentric and eccentric loadings, Eng. Struct., vol. 227, pp. 111461, 2021. DOI: 10.1016/j.engstruct.2020.111461.
  • T. A. Hales, C. P. Pantelides, and L. D. Reaveley, Analytical buckling model for slender FRP-reinforced concrete columns, Compos. Struct., vol. 176, pp. 33–42, 2017. DOI: 10.1016/j.compstruct.2017.05.034.
  • T. I. Altanopoulos, I. G. Raftoyiannis, and D. Polyzois, Finite element method for the static behavior of tapered poles made of glass fibre reinforced polymer, Mech. Adv. Mater. Struct., vol. 28, no. 20, pp. 2141–2110, 2021. DOI: 10.1080/15376494.2020.1717691.
  • H. C. Biscaia, et al., Mechanical response of anchored FRP bonded joints: a nonlinear analytical approach, Mech. Adv. Mater. Struct., vol. 25, no. 3, pp. 238–252, 2018. DOI: 10.1080/15376494.2016.1255812.
  • M. H. El Ouni, and A. Raza, Data-driven analysis of concrete-filled steel-tube CFRP-confined NSC columns, Mech. Adv. Mater. Struct., pp. 1–22, 2021. DOI: 10.1080/15376494.2021.1961953.
  • M. Emadi, H. Beheshti, and M. Heidari-Rarani, Thickness effect study on the crushing characteristics of aluminum and composite tubes: Numerical analysis and multi-objective optimization, Mech. Adv. Mater. Struct., vol. 28, no. 24, pp. 2585–2510, 2021. DOI: 10.1080/15376494.2020.1747667.
  • H. L. Dong, et al., Axial compressive behavior of square concrete columns reinforced with innovative closed-type winding GFRP stirrups, Compos. Struct., vol. 192, pp. 115–125, 2018. DOI: 10.1016/j.compstruct.2018.02.092.
  • C. C. Choo, I. E. Harik, and H. Gesund, Strength of rectangular concrete columns reinforced with fibre-reinforced polymer bars, ACI Struct. J., vol. 103, no. 3, pp. 452, 2006.
  • C. C. Choo, I. E. Harik, and H. Gesund, Minimum reinforcement ratio for fibre-reinforced polymer reinforced concrete rectangular columns, ACI Mater. J., vol. 103, no. 3, pp. 460, 2006.
  • M. Z. Afifi, H. M. Mohamed, and B. Benmokrane, Axial capacity of circular concrete columns reinforced with GFRP bars and spirals, J. Compos. Constr., vol. 18, no. 1, pp. 04013017, 2014. DOI: 10.1061/(ASCE)CC.1943-5614.0000438.
  • L. Sun, M. Wei, and N. Zhang, Experimental study on the behavior of GFRP reinforced concrete columns under eccentric axial load, Construct. Build. Mater., vol. 152, pp. 214–225, 2017. DOI: 10.1016/j.conbuildmat.2017.06.159.
  • M. N. Hadi, H. Karim, and M. N. Sheikh, Experimental investigations on circular concrete columns reinforced with GFRP bars and helices under different loading conditions, J. Compos. Constr., vol. 20, no. 4, pp. 04016009, 2016. DOI: 10.1061/(ASCE)CC.1943-5614.0000670.
  • M. H. Hameed, A. H. A. Al-Ahmed, and Z. K. Abbas, Enhancing the strength of reinforced concrete columns using steel embedded tubes, Mech. Adv. Mater. Struct., vol. 29, no. 14, pp. 2008–2016, 2022. DOI: 10.1080/15376494.2020.1847373.
  • T. T. Le, Practical machine learning-based prediction model for axial capacity of square CFST columns, Mech. Adv. Mater. Struct., vol. 29, no. 12, pp. 1782–1716, 2022. DOI: 10.1080/15376494.2020.1839608.
  • V. Toufigh, H. Saadatmanesh, and A. Arzeytoon, Plastic hinge integration methods for cyclic analysis of polymer concrete-filled fibre reinforced polymer tube beams, Mech. Adv. Mater. Struct., vol. 27, no. 9, pp. 734–743, 2020. DOI: 10.1080/15376494.2018.1495789.
  • V. Toufigh, et al., Behavior of polymer concrete beam/pile confined with CFRP sleeves, Mech. Adv. Mater. Struct., vol. 26, no. 4, pp. 333–340, 2019. DOI: 10.1080/15376494.2017.1387323.
  • Y. F. Zhang, and Z. Q. Zhang, Study on equivalent confinement coefficient of composite CFST column based on unified theory, Mech. Adv. Mater. Struct., vol. 23, no. 1, pp. 22–27, 2016. DOI: 10.1080/15376494.2014.922650.
  • H. Tobbi, A. S. Farghaly, and B. Benmokrane, Concrete columns reinforced longitudinally and transversally with glass fibre-reinforced polymer bars, ACI Struct. J., vol. 109, no. 4, pp. 551–558, 2012.
  • H. Mohamed, M. Z. Afifi, and B. Benmokrane, Performance evaluation of concrete columns reinforced longitudinally with FRP bars and confined with FRP hoops and spirals under axial load, J. Bridge Eng., vol. 19, no. 7, pp. 04014020, 2014. DOI: 10.1061/(ASCE)BE.1943-5592.0000590.
  • O. AlAjarmeh, A. C. Manalo, B. Benmokrane, W. Karunasena, and P. Mendis, Axial performance of hollow concrete columns reinforced with GFRP composite bars with different reinforcement ratios, Compos. Struct., vol. 213, pp. 153–164, 2019. DOI: 10.1016/j.compstruct.2019.01.096.
  • O. AlAjarmeh, A. C. Manalo, B. Benmokrane, W. Karunasena, P. Mendis, and K. T. Q. Nguyen, Compressive behavior of axially loaded circular hollow concrete columns reinforced with GFRP bars and spirals, Constr. Build. Mater., vol. 194, pp. 12–23, 2019. DOI: 10.1016/j.conbuildmat.2018.11.016.
  • A. Raza, et al., Prediction of axial load-carrying capacity of GFRP-reinforced concrete columns through artificial neural networks, Structures, vol. 28, pp. 1557–1571, 2020. DOI: 10.1016/j.istruc.2020.10.010.
  • A. Ahmad, et al., Reliability analysis of strength models for short-concrete columns under concentric loading with FRP rebars through Artificial Neural Network, J. Build. Eng., vol. 42, pp. 102497, 2021. DOI: 10.1016/j.jobe.2021.102497.
  • A. Cascardi, F. Micelli, and M. A. Aiello, An Artificial Neural Networks model for the prediction of the compressive strength of FRP-confined concrete circular columns, Eng. Struct., vol. 140, pp. 199–208, 2017. DOI: 10.1016/j.engstruct.2017.02.047.
  • M. Hisham, G. A. Hamdy, and O. O. El-Mahdy, Prediction of temperature variation in FRP-wrapped RC columns exposed to fire using artificial neural networks, Eng. Struct., vol. 238, pp. 112219, 2021. DOI: 10.1016/j.engstruct.2021.112219.
  • A. Raza, M. H. El Ouni, J. Baili, and Q. uz Zaman Khan, Data-driven analysis on axial strength of GFRP-NSC columns based on practical artificial neural network tool, Compos. Struct., vol. 291, pp. 115598, 2022. DOI: 10.1016/j.compstruct.2022.115598.
  • H. R. Ashrafi, M. Jalal, and K. Garmsiri, Prediction of load–displacement curve of concrete reinforced by composite fibres (steel and polymeric) using artificial neural network, Expert Syst. Appl., vol. 37, no. 12, pp. 7663–7668, 2010. DOI: 10.1016/j.eswa.2010.04.076.
  • A. Cevik, and A. F. Cabalar, A genetic‐programming‐based formulation for the strength enhancement of fibre‐reinforced‐polymer‐confined concrete cylinders, J. Appl. Polym. Sci., vol. 110, no. 5, pp. 3087–3095, 2008. DOI: 10.1002/app.28839.
  • A. Cevik, and I. H. Guzelbey, Neural network modeling of strength enhancement for CFRP confined concrete cylinders, Build. Environ., vol. 43, no. 5, pp. 751–763, 2008. DOI: 10.1016/j.buildenv.2007.01.036.
  • A. Cevik, M. T. Göğüş, İH. Güzelbey, and H. Filiz, Soft computing based formulation for strength enhancement of CFRP confined concrete cylinders, Adv. Eng. Softw., vol. 41, no. 4, pp. 527–536, 2010. DOI: 10.1016/j.advengsoft.2009.10.015.
  • H. Naderpour, A. Kheyroddin, and G. G. Amiri, Prediction of FRP-confined compressive strength of concrete using artificial neural networks, Compos. Struct., vol. 92, no. 12, pp. 2817–2829, 2010. DOI: 10.1016/j.compstruct.2010.04.008.
  • H. Elsanadedy, Y. A. Al-Salloum, H. Abbas, and S. H. Alsayed, Prediction of strength parameters of FRP-confined concrete, Compos. B Eng., vol. 43, no. 2, pp. 228–239, 2012. DOI: 10.1016/j.compositesb.2011.08.043.
  • T. M. Pham, and M. N. S. Hadi, Predicting stress and strain of FRP-confined square/rectangular columns using artificial neural networks, J. Compos. Constr., vol. 18, no. 6, pp. 04014019, 2014. DOI: 10.1061/(ASCE)CC.1943-5614.0000477.
  • A. Hadhood, H. M. Mohamed, B. Benmokrane, A. Nanni, and C. K. Shield, Assessment of design guidelines of concrete columns reinforced with glass fibre-reinforced polymer bars, ACI Struct. J., vol. 116, no. 4, pp. 193–207, 2019. DOI: 10.14359/51715663.
  • H. Naderpour, K. Nagai, P. Fakharian, and M. Haji, Innovative models for prediction of compressive strength of FRP-confined circular reinforced concrete columns using soft computing methods, Compos. Struct., vol. 215, pp. 69–84, 2019. DOI: 10.1016/j.compstruct.2019.02.048.
  • H. Naderpour, K. Nagai, M. Haji, and M. Mirrashid, Adaptive neuro‐fuzzy inference modeling and sensitivity analysis for capacity estimation of fibre-reinforced polymer ‐strengthened circular reinforced concrete columns, Expert Syst., vol. 36, no. 4, pp. e12410, 2019. DOI: 10.1111/exsy.12410.
  • ASTM D7205/D7205M-06. Standard Test Method for Tensile Properties of Fiber Reinforced Polymer Matrix Composite Bars, 2011. DOI: 10.1520/D7205_D7205M-06.
  • M. Elchalakani, and G. Ma, Tests of glass fibre reinforced polymer rectangular concrete columns subjected to concentric and eccentric axial loading, Eng. Struct., vol. 151, pp. 93–104, 2017. DOI: 10.1016/j.engstruct.2017.08.023.
  • A. Raza, and Q. Z. Khan, Structural behavior of GFRP-reinforced circular HFRC columns under concentric and eccentric loading, Arab. J. Sci. Eng., vol. 46, no. 5, pp. 4239–4252, 2021. DOI: 10.1007/s13369-020-04881-0.
  • A. Raza, M. H. El Ouni, Q. Uz Zaman Khan, and M. Berradia, Structural assessment of eccentrically loaded GFRP reinforced circular concrete columns: experiments and finite element analysis, Compos. Struct., vol. 275, pp. 114528, 2021. DOI: 10.1016/j.compstruct.2021.114528.
  • A. Raza, and Q. Khan, Experimental and theoretical study of GFRP hoops and spirals in hybrid fibre reinforced concrete short columns, Mater. Struct., vol. 53, no. 6, pp. 1–14, 2020. DOI: 10.1617/s11527-020-01575-9.
  • Cho, S. H. Kim Y. I., Effects steel fibres on short beams loaded in shear, ACI Struct. J., vol. 100, no. 79, pp. 765–774, 2003.
  • A. Raza, A. C. Manalo, U. Rafique, O. S. AlAjarmeh, and Q. Z. Khan, Concentrically loaded recycled aggregate geopolymer concrete columns reinforced with GFRP bars and spirals, Compos. Struct., vol. 268, pp. 113968, 2021. DOI: 10.1016/j.compstruct.2021.113968.
  • A. Raza, and U. Rafique, Efficiency of GFRP bars and hoops in recycled aggregate concrete columns: Experimental and numerical study, Compos. Struct., vol. 255, pp. 112986, 2021. DOI: 10.1016/j.compstruct.2020.112986.
  • M. Elchalakani, M. Dong, A. Karrech, G. Li, M. S. Mohamed Ali, and B. Yang, Experimental investigation of rectangular air-cured geopolymer concrete columns reinforced with GFRP Bars and stirrups, J. Compos. Constr., vol. 23, no. 3, pp. 04019011, 2019. DOI: 10.1061/(ASCE)CC.1943-5614.0000938.
  • A. Ahmad, Q. Z. Khan, and A. Raza, Reliability analysis of strength models for CFRP-confined concrete cylinders, Compos. Struct., vol. 244, pp. 112312, 2020. DOI: 10.1016/j.compstruct.2020.112312.
  • A. Cladera, and A. J. E. S. Marí, Shear design procedure for reinforced normal and high-strength concrete beams using artificial neural networks. Part I: beams without stirrups, Eng. Struct., vol. 26, no. 7, pp. 917–926, 2004. DOI: 10.1016/j.engstruct.2004.02.010.
  • A. Cladera, and AJEs Mari, Shear design procedure for reinforced normal and high-strength concrete beams using artificial neural networks. Part II: beams with stirrups, Eng. Struct., vol. 26, no. 7, pp. 927–936, 2004. DOI: 10.1016/j.engstruct.2004.02.011.
  • Y. A. LeCun, Efficient backprop. Neural Networks: Tricks of the Trade, Springer, Berlin, Germany, 2012, p. 9–48.
  • S. Alsayed, Concrete columns reinforced by glass fibre reinforced polymer rods, Special Publication., vol. 188, pp. 103–112, 1999.
  • M. Z. Afifi, H. M. Mohamed, and B. Benmokrane, Theoretical stress–strain model for circular concrete columns confined by GFRP spirals and hoops, Eng. Struct., vol. 102, pp. 202–213, 2015. DOI: 10.1016/j.engstruct.2015.08.020.
  • M. Dong, M. Elchalakani, A. Karrech, T. M. Pham, and B. Yang, Glass fibre-reinforced polymer circular alkali-activated fly ash/slag concrete members under combined loading, Eng. Struct., vol. 199, pp. 109598, 2019. DOI: 10.1016/j.engstruct.2019.109598.
  • A. De Luca, F. Matta, and A. Nanni, Behavior of full-scale GFRP reinforced concrete columns under axial load, ACI Struct. J., vol. 107, no. 5, pp. 589–596, 2010.
  • M. Elchalakani, G. Ma, F. Aslani, and W. Duan, Design of GFRP-reinforced rectangular concrete columns under eccentric axial loading, Mag. Concr. Res., vol. 69, no. 17, pp. 865–877, 2017. DOI: 10.1680/jmacr.16.00437.
  • M. Guérin, H. M. Mohamed, B. Benmokrane, A. Nanni, and C. K. Shield, Eccentric behavior of full-scale reinforced concrete columns with glass fibre-reinforced polymer bars and ties, ACI Struct. J., vol. 115, no. 2, pp. 489–499, 2018. DOI: 10.14359/51701107.
  • C. P. Pantelides, M. E. Gibbons, and L. D. Reaveley, Axial load behavior of concrete columns confined with GFRP spirals, J. Compos. Constr., vol. 17, no. 3, pp. 305–313, 2013. DOI: 10.1061/(ASCE)CC.1943-5614.0000357.
  • G. B. Maranan, A. C. Manalo, B. Benmokrane, W. Karunasena, and P. Mendis, Behavior of concentrically loaded geopolymer-concrete circular columns reinforced longitudinally and transversely with GFRP bars, Eng. Struct., vol. 117, pp. 422–436, 2016. DOI: 10.1016/j.engstruct.2016.03.036.
  • Q. S. Khan, M. N. Sheikh, and M. N. Hadi, Axial-flexural interactions of GFRP-CFFT columns with and without reinforcing GFRP bars, J. Compos. Constr., vol. 21, no. 3, pp. 04016109, 2017. DOI: 10.1061/(ASCE)CC.1943-5614.0000771.
  • A. Hadhood, H. M. Mohamed, and B. Benmokrane, Axial load–moment interaction diagram of circular concrete columns reinforced with CFRP bars and spirals: experimental and theoretical investigations, J. Compos. Constr., vol. 21, no. 2, pp. 04016092, 2017. DOI: 10.1061/(ASCE)CC.1943-5614.0000748.
  • A. Hassan, F. Khairallah, H. Mamdouh, and M. Kamal, Structural behaviour of self-compacting concrete columns reinforced by steel and glass fibre-reinforced polymer rebars under eccentric loads, Eng. Struct., vol. 188, pp. 717–728, 2019. DOI: 10.1016/j.engstruct.2019.03.067.
  • M. N. Hadi, and J. Youssef, Experimental investigation of GFRP-reinforced and GFRP-encased square concrete specimens under axial and eccentric load, and four-point bending test, J. Compos. Constr., vol. 20, no. 5, pp. 04016020, 2016. DOI: 10.1061/(ASCE)CC.1943-5614.0000675.
  • A. Hadhood, H. M. Mohamed, and B. Benmokrane, Assessing stress-block parameters in designing circular high-strength concrete members reinforced with FRP bars, J. Struct. Eng., vol. 144, no. 10, pp. 04018182, 2018. DOI: 10.1061/(ASCE)ST.1943-541X.0002173.
  • M. Guérin, H. M. Mohamed, B. Benmokrane, C. K. Shield, and A. Nanni, Effect of glass fibre-reinforced polymer reinforcement ratio on axial-flexural strength of reinforced concrete columns, ACI Struct. J., vol. 115, no. 4, pp. 1049–1043, 2018. DOI: 10.14359/51701279.
  • W. Prachasaree, S. Piriyakootorn, A. Sangsrijun, and S. Limkatanyu, Behavior and performance of GFRP reinforced concrete columns with various types of stirrups, Int. J. Polym. Sci., vol. 2015, pp. 1–9, 2015. DOI: 10.1155/2015/237231.
  • P. P. Sankholkar, C. P. Pantelides, and T. A. Hales, Confinement model for concrete columns reinforced with GFRP spirals, J. Compos. Constr., vol. 22, no. 3, pp. 04018007, 2018. DOI: 10.1061/(ASCE)CC.1943-5614.0000843.
  • J. Tu, K. Gao, L. He, and X. Li, Experimental study on the axial compression performance of GFRP-reinforced concrete square columns, Adv. Struct. Eng., vol. 22, no. 7, pp. 1554–1565, 2019. DOI: 10.1177/1369433218817988.
  • W. Xue, F. Peng, and Z. Fang, Behavior and design of slender rectangular concrete columns longitudinally reinforced with fibre-reinforced polymer bars, ACI Struct. J., vol. 115, no. 2, pp. 311–322, 2018. DOI: 10.14359/51701131.
  • J. Youssef, and M. N. Hadi, Axial load-bending moment diagrams of GFRP reinforced columns and GFRP encased square columns, Constr. Build. Mater., vol. 135, pp. 550–564, 2017. DOI: 10.1016/j.conbuildmat.2016.12.125.
  • A. Raza, S. A. R. Shah*, A. Rehman Khan, M. A.Aslam, T. A. Khan, K. Arshad, S. Hussan, A. Sultan, G. Shahzadi, and M. Waseem, Sustainable FRP-Confined Symmetric Concrete Structures: An Application Experimental and Numerical Validation Process for Reference Data. Applied Sciences, vol. 10, 333, 2020. DOI: 10.3390/app10010333.
  • A. Krogh, and J. Vedelsby, Neural network ensembles, cross validation, and active learning, Adv. Neyral Inform. Proc. Syst., vol. 7, pp. 21–238, 1995.
  • J. Utans, J. Moody, S. Rehfuss, and H. Siegelmannt, Input variable selection for neural networks: application to predicting the US business cycle, IEEE Transactions on Knowledge and Data Engineering, pp. 118–122, 1995.
  • G. Castellano, and A. M. Fanelli, Variable selection using neural-network models, Neurocomputing, vol. 31, no. 1–4, pp. 1–13, 2000. DOI: 10.1016/S0925-2312(99)00146-0.
  • J. B. Mander, M. Priestley, and R. Park, Theoretical stress-strain model for confined concrete, J. Struct. Eng., vol. 114, no. 8, pp. 1804–1826, 1988. DOI: 10.1061/(ASCE)0733-9445(1988)114:8(1804).
  • Q. X. Shi, N. Wang, J. B. Tian, and J. L. Shi, A practical stress-strain model for high-strength stirrups confined concrete, J. Build. Mater., vol. 17, no. 02, pp. 216–222, 2014.
  • A. Raza, B. Ali, M. Asad Nawaz, and I. Ahmed, Structural performance of FRP-RC compression members wrapped with FRP composites, Structures, vol. 27, pp. 1693–1709, 2020. DOI: 10.1016/j.istruc.2020.07.071.
  • H. Tobbi, A. S. Farghaly, and B. Benmokrane, Behavior of concentrically loaded fibre-reinforced polymer reinforced concrete columns with varying reinforcement types and ratios, ACI Struct. J., vol. 111, no. 0 , pp. 375–386, 2014. DOI: 10.14359/51686630.
  • A. K. Samani, and M. M. Attard, A stress–strain model for uniaxial and confined concrete under compression, Eng. Struct., vol. 41, pp. 335–349, 2012. DOI: 10.1016/j.engstruct.2012.03.027.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.