172
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Thermo-electro-mechanical coupling dynamic analysis of piezoelectric structures via stabilized node-based smoothed radial point interpolation method

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 4952-4968 | Received 07 Jun 2022, Accepted 01 Aug 2022, Published online: 23 Aug 2022

References

  • N. Wu, B. Bao, and Q. Wang, Review on engineering structural designs for efficient piezoelectric energy harvesting to obtain high power output, Eng. Struct., vol. 235, pp. 112068, 2021. DOI: 10.1016/j.engstruct.2021.112068.
  • W. L. Yang, Y. T. Hu, and E. N. Pan, Tuning electronic energy band in a piezoelectric semiconductor rod via mechanical loading, Nano Energy, vol. 66, pp. 104147, 2019. DOI: 10.1016/j.nanoen.2019.104147.
  • J. Sladek, V. Sladek, S. Hrcek, and E. Pan, The nonlocal and gradient theories for a large deformation of piezoelectric nanoplates, Compos. Struct., vol. 172, pp. 119–129, 2017. DOI: 10.1016/j.compstruct.2017.03.080.
  • B. Nie, G. W. Meng, and L. M. Zhou, The static and dynamic analysis for the coupling hygro-electro-mechanical multifield problems via stabilized node-based smoothed radial point interpolation method, Mech. Adv. Mater. Struct., pp. 1–17, 2022. DOI: 10.1080/15376494.2022.2061657.
  • M. Vinyas, Effect of carbon nanotube-reinforced magneto-electro-elastic facings on the pyrocoupled nonlinear deflection of viscoelastic sandwich skew plates in thermal environment, P I Mech. Eng. L-J Mat., vol. 236, no. 1, pp. 200–221, 2021. DOI: 10.1177/14644207211044093.
  • M. Vinyas, Nonlinear pyrocoupled dynamic response of functionally graded magnetoelectroelastic plates under blast loading in thermal environment, Mech. Based Des. Struct., pp. 1–26, 2022. DOI: 10.1080/15397734.2022.2047723.
  • Z. H. Liu, Y. Yuan, H. Wan, Z. Luo, P. Gao, J. Zhuang, J. Zhang, N. Zhang, J. Li, W. Ren, Z. G. Ye, Y. Zhan, and H. Wu, Recent progress in bismuth-based high Curie temperature piezo-/ferroelectric perovskites for electromechanical transduction applications, Curr. Opin. Solid St. M., vol. 26, no. 5, pp. 101016, 2022. DOI: 10.1016/j.cossms.2022.101016.
  • M. Vinyas, V. Mahesh, S. Mukunda, and D. Harursampath, Influence of micro-topological textures of BaTiO3-CoFe2O4 composites on the nonlinear pyrocoupled dynamic response of blast loaded magneto-electro-elastic plates in thermal environment, Eur. Phys. J. Plus., vol. 137, pp. 675, 2022. DOI: 10.1140/epjp/s13360-022-02829-x.
  • B. Karami, and D. Shahsavari, Nonlocal strain gradient model for thermal stability of FG nanoplates integrated with piezoelectric layers, Smart Struct. Syst., vol. 23, pp. 215–225, 2019. DOI: 10.12989/sss.2019.23.3.215.
  • M. Vinyas, and S. C. Kattimani, Multiphysics response of magneto-electro-elastic beams in thermo-mechanical environment, Coupled Syst. Mech., vol. 6, pp. 351–367, 2017. DOI: 10.12989/csm.2017.6.3.351.
  • Q. Li, J. X. Wei, J. R. Cheng, and J. G. Chen, High temperature dielectric, ferroelectric and piezoelectric properties of Mn-modified BiFeO3-BaTiO3 lead-free ceramics, J. Mater. Sci., vol. 52, no. 1, pp. 229–237, 2017. DOI: 10.1007/s10853-016-0325-6.
  • M. Vinyas, A numerical investigation on the nonlinear pyrocoupled dynamic response of blast loaded magnetoelectroelastic multiphase porous plates in thermal environment, Eur. Phys. J. Plus., vol. 137, pp. 626, 2022. DOI: 10.1140/epjp/s13360-022-02795-4.
  • S. Kapuria, A. Ahmed, and P. C. Dumir, Coupled consistent third-order theory for hybrid piezoelectric beams under thermal load, J. Therm. Stresses, vol. 27, no. 5, pp. 405–424, 2004. DOI: 10.1080/01495730490442765.
  • M. H. Zhao, Q. Y. Zhang, E. N. A. Pan, and C. Y. Fan, Fundamental solutions and numerical modeling of an elliptical crack with polarization saturation in a transversely isotropic piezoelectric medium, Eng. Fract. Mech., vol. 131, pp. 627–642, 2014. DOI: 10.1016/j.engfracmech.2014.10.006.
  • A. M. Zenkour, and M. H. Aljadani, Thermo-electrical buckling response of actuated functionally graded piezoelectric nanoscale plates, Results Phys., vol. 13, pp. 102192, 2019. DOI: 10.1016/j.rinp.2019.102192.
  • C. Zhang, Y. K. Cheung, S. Di, and N. Zhang, The exact solution of coupled thermoelectroelastic behavior of piezoelectric laminates, Comput. Struct., vol. 80, no. 13, pp. 1201–1212, 2002. DOI: 10.1016/S0045-7949(02)00060-3.
  • C. Y. Fan, Y. F. Zhao, M. H. Zhao, and E. N. A. Pan, Analytical solution of a semi-permeable crack in a 2D piezoelectric medium based on the PS model, Mech. Res. Commun., vol. 40, pp. 34–40, 2012. DOI: 10.1016/j.mechrescom.2012.01.001.
  • A. Alibeigloo, Thermo-elasticity solution of functionally graded plates integrated with piezoelectric sensor and actuator layers, J. Therm. Stresses., vol. 33, no. 8, pp. 754–774, 2010. DOI: 10.1080/01495739.2010.482350.
  • A. Alibeigloo, Thermoelasticity analysis of functionally graded beam with integrated surface piezoelectric layers, Compos. Struct., vol. 92, no. 6, pp. 1535–1543, 2010. DOI: 10.1016/j.compstruct.2009.10.030.
  • A. Komeili, A. H. Akbarzadeh, A. Doroushi, and A. R. Eslami, Static analysis of functionally graded piezoelectric beams under thermo-electro-mechanical loads, Adv. Mech. Eng., vol. 3, pp. 153731, 2011. DOI: 10.1155/2011/153731.
  • N. Dhanesh, and S. Kapuria, Edge effects in elastic and piezoelectric laminated panels under thermal loading, J. Therm. Stresses, vol. 41, no. 10-12, pp. 1577–1596, 2018. DOI: 10.1080/01495739.2018.1524732.
  • V. Mahesh, and D. Harursampath, Nonlinear deflection analysis of CNT/magneto-electro-elastic smart shells under multi-physics loading, Mech. Adv. Mater. Struct., vol. 29, no. 7, pp. 1047–1071, 2022. DOI: 10.1080/15376494.2020.1805059.
  • M. Vinyas, Nonlinear damping of auxetic sandwich plates with functionally graded magneto-electro-elastic facings under multiphysics loads and electromagnetic circuits, Compos. Struct., vol. 290, pp. 115523, 2022. DOI: 10.1016/j.compstruct.2022.115523.
  • M. Vinyas, Nonlinear pyrocoupled deflection of viscoelastic sandwich shell with CNT reinforced magneto-electro-elastic facing subjected to electromagnetic loads in thermal environment, Eur. Phys. J. Plus., vol. 136, pp. 796, 2021. DOI: 10.1140/epjp/s13360-021-01751-y.
  • A. M. Zenkour, and R. A. Alghanmi, Static response of sandwich plates with FG core and piezoelectric faces under thermo-electro-mechanical loads and resting on elastic foundations, Thin-Walled Struct., vol. 157, pp. 107025, 2020. DOI: 10.1016/j.tws.2020.107025.
  • M. Vinyas, Porosity effect on the energy harvesting behaviour of functionally graded magneto-electro-elastic/fibre-reinforced composite beam, Eur. Phys. J. Plus., vol. 137, pp. 48, 2021. DOI: 10.1140/epjp/s13360-021-02235-9.
  • A. Alibeigloo, Three-dimensional thermoelasticity solution of functionally graded carbon nanotube reinforced composite plate embedded in piezoelectric sensor and actuator layers, Compos. Struct., vol. 118, pp. 482–495, 2014. DOI: 10.1016/j.compstruct.2014.08.004.
  • D. Q. Chan, N. V. Thanh, N. D. Khoa, and N. D. Duc, Nonlinear dynamic analysis of piezoelectric functionally graded porous truncated conical panel in thermal environments, Thin-Walled Struct., vol. 154, pp. 106837, 2020. DOI: 10.1016/j.tws.2020.106837.
  • Y. F. Zhang, W. Zhang, and Z. G. Yao, Analysis on nonlinear vibrations near internal resonances of a composite laminated piezoelectric rectangular plate, Eng. Struct., vol. 173, pp. 89–106, 2018. DOI: 10.1016/j.engstruct.2018.04.100.
  • M. Vinyas, Active control of nonlinear coupled transient vibrations of multifunctional sandwich plates with agglomerated FG-CNTs core/magneto-electro-elastic facesheets, Thin-Walled Struct., vol. 179, pp. 109547, 2022. DOI: 10.1016/j.tws.2022.109547.
  • M. Vinyas, and S. Kattimani, Finite element simulation of controlled frequency response of skew multiphase magneto-electro-elastic plates, J. Intel. Mat. Syst. Struct., vol. 30, no. 12, pp. 1757–1771, 2019. DOI: 10.1177/1045389X19843674.
  • A. L. Araujo, V. S. Carvalho, C. M. M. Soares, J. Belinha, and A. J. M. Ferreira, Vibration analysis of laminated soft core sandwich plates with piezoelectric sensors and actuators, Compos. Struct., vol. 151, pp. 91–98, 2016. DOI: 10.1016/j.compstruct.2016.03.013.
  • V. Mahesh, and D. Harursampath, Nonlinear vibration of functionally graded magneto-electro-elastic higher order plates reinforced by CNTs using FEM, Eng. Comput. Germany, vol. 38, no. 2, pp. 1029–1051, 2022. DOI: 10.1007/s00366-020-01098-5.
  • S. Sharma, R. Vig, and N. Kumar, Finite element modeling of smart piezo structure: considering dependence of piezoelectric coecients on electric field, Mech. Based Des. Struct., vol. 44, no. 4, pp. 372–383, 2016. DOI: 10.1080/15397734.2015.1076728.
  • M. Vinyas, Interphase effect on the controlled frequency response of three-phase smart magneto-electro-elastic plates embedded with active constrained layer damping: FE study, Mater. Res. Express., vol. 6, no. 12, pp. 125707, 2020. DOI: 10.1088/2053-1591/ab6649.
  • W. Smittakorn, and P. R. Heyliger, A discrete-layer model of laminated hygrothermopiezoelectric plates, Mech. Adv. Mater. Struct., vol. 7, no. 1, pp. 79–104, 2000. DOI: 10.1080/107594100305438.
  • N. Ganesan, and R. Kadoli, Buckling and dynamic analysis of piezothermoelastic composite cylindrical shell, Compos. Struct., vol. 59, no. 1, pp. 45–60, 2003. DOI: 10.1016/S0263-8223(02)00230-1.
  • E. Li, Z. C. He, L. Chen, B. Li, X. Xu, and G. R. Liu, An ultra-accurate hybrid smoothed finite element method for piezoelectric problem, Eng. Anal. Bound. Elem., vol. 50, pp. 188–197, 2015. DOI: 10.1016/j.enganabound.2014.08.005.
  • M. Vinyas, Nonlinear free vibration of multifunctional sandwich plates with auxetic core and magneto-electro-elastic facesheets of different micro-topological textures: FE approach, Mech. Adv. Mater. Struct., pp. 1–22, 2021. DOI: 10.1080/15376494.2021.1974619.
  • T. Zhang, and H. G. Li, Adaptive pole placement control for vibration control of a smart cantilevered beam in thermal environment, J. Vib. Control., vol. 19, no. 10, pp. 1460–1470, 2013. DOI: 10.1177/1077546312445596.
  • Y. B. Chai, W. Li, and Z. Y. Liu, Analysis of transient wave propagation dynamics using the enriched finite element method with interpolation cover functions, Appl. Math. Comput., vol. 412, pp. 126564, 2022. DOI: 10.1016/j.amc.2021.126564.
  • Y. C. Li, S. N. Dang, W. Li and Y. B. Chai, Free and forced vibration analysis of two-dimensional linear elastic solids using the finite element methods enriched by interpolation cover functions, Mathematics-Basel., vol. 10, pp. 456, 2022. DOI: 10.3390/math10030456.
  • G. R. Liu, K. Y. Dai, and T. T. Nguyen, A smoothed finite element method for mechanics problems, Comput. Mech., vol. 39, no. 6, pp. 859–877, 2007. DOI: 10.1007/s00466-006-0075-4.
  • G. R. Liu, T. T. Nguyen, K. Y. Dai, and K. Y. Lam, Theoretical aspects of the smoothed finite element method (SFEM), Int. J. Numer. Meth. Eng., vol. 71, no. 8, pp. 902–930, 2007. DOI: 10.1002/nme.1968.
  • G. R. Liu, H. Nguyen-Xuan, and T. Nguyen-Thoi, A theoretical study on the smoothed FEM (S-FEM) models: properties, accuracy and convergence rates, Int. J. Numer. Meth. Eng., vol. 84, no. 10, pp. 1222–1256, 2010. DOI: 10.1002/nme.2941.
  • Z. Q. Zhang, and G. R. Liu, Upper and lower bounds for natural frequencies: a property of the smoothed finite element methods, Int. J. Numer. Meth. Eng., vol. 84, pp. 149–178, 2010. DOI: 10.1002/nme.2889.
  • Z. C. He, G. R. Liu, Z. H. Zhong, S. C. Wu, G. Y. Zhang, and A. G. Cheng, An edge-based smoothed finite element method (ES-FEM) for analyzing three-dimensional acoustic problems, Comput. Method Appl. M., vol. 199, no. 1–4, pp. 20–33, 2009. DOI: 10.1016/j.cma.2009.09.014.
  • Z. C. He, G. Y. Li, Z. H. Zhong, A. G. Cheng, G. Y. Zhang, G. R. Liu, E. Li, Z. Zhou, An edge-based smoothed tetrahedron finite element method (ES-T-FEM) for 3D static and dynamic problems, Comput Mech., vol. 52, no. 1, pp. 221–236, 2013. DOI: 10.1007/s00466-012-0809-4.
  • H. H. Phan-Dao, H. Nguyen-Xuan, C. Thai-Hoang, T. Nguyen-Thoi, and T. Rabczuk, An edge-based smoothed finite element method for analysis of laminated composite plates, Int. J. Comput. Methods, vol. 10, no. 01, pp. 1340005, 2013. DOI: 10.1142/S0219876213400057.
  • C. V. Le, H. Nguyen-Xuan, H. Askes, S. P. A. Bordas, T. Rabczuk, and H. Nguyen-Vinh, A cell-based smoothed finite element method for kinematic limit analysis, Int. J. Numer. Meth. Eng., vol. 83, no. 12, pp. 1651–1674, 2010. DOI: 10.1002/nme.2897.
  • G. R. Liu, W. Zeng, and H. Nguyen-Xuan, Generalized stochastic cell-based smoothed finite element method (GS_CS-FEM) for solid mechanics, Finite Elem. Anal. Des., vol. 63, pp. 51–61, 2013. DOI: 10.1016/j.finel.2012.08.007.
  • L. M. Zhou, B. Nie, S. H. Ren, R. Y. Liu, X. L. Li, and B. Xue, Coupling magneto-electro-elastic cell-based smoothed radial point interpolation method for static and dynamic characterization of MEE structures, Acta Mech., vol. 230, no. 5, pp. 1641–1662, 2019. DOI: 10.1007/s00707-018-2351-8.
  • Z. C. He, G. Y. Zhang, L. Deng, E. Li, and G. R. Liu, Topology optimization using node-based smoothed finite element method, Int. J. Appl. Mech., vol. 07, no. 06, pp. 1550085, 2015. DOI: 10.1142/S1758825115500854.
  • H. Nguyen-Xuan, T. Rabczuk, T. Nguyen-Thoi, T. N. Tran, and N. Nguyen-Thanh, Computation of limit and shakedown loads using a node-based smoothed finite element method, Int. J. Numer. Meth. Eng., vol. 90, no. 3, pp. 287–310, 2012. DOI: 10.1002/nme.3317.
  • G. R. Liu, L. Chen, T. Nguyen-Thoi, K. Y. Zeng, and G. Y. Zhang, A novel singular node-based smoothed finite element method (NS-FEM) for upper bound solutions of fracture problems, Int. J. Numer. Meth. Eng., vol. 83, no. 11, pp. 1466–1497, 2010. DOI: 10.1002/nme.2868.
  • X. Y. Cui, H. Feng, G. Y. Li, and S. Z. Feng, A cell-based smoothed radial point interpolation method (CS-RPIM) for three-dimensional solids, Eng. Anal. Bound Elem., vol. 50, pp. 474–485, 2015. DOI: 10.1016/j.enganabound.2014.09.017.
  • G. Y. Zhang, Z. Chen, Z. Sui, D. Tao, Z. He, Q. Tang, L. Sun, A cell-based smoothed radial point interpolation method with virtual nodes for three-dimensional mid-frequency acoustic problems, Int. J. Numer. Methods Eng., vol. 119, no. 6, pp. 548–566, 2019. DOI: 10.1002/nme.6062.
  • Y. C. Tong, High precision solution for thermo-elastic equations using stable node-based smoothed finite element method, Appl. Math. Comput., vol. 336, pp. 272–287, 2018. DOI: 10.1016/j.amc.2018.05.006.
  • Y. T. Gu, and G. R. Liu, A local point interpolation method for static and dynamic analysis of thin beams, Comput. Method Appl. M., vol. 190, no. 42, pp. 5515–5528, 2001. DOI: 10.1016/S0045-7825(01)00180-3.
  • G. R. Liu, and Y. T. Gu, A matrix triangularization algorithm for the polynomial point interpolation method, Comput. Method Appl. M., vol. 192, no. 19, pp. 2269–2295, 2003. DOI: 10.1016/S0045-7825(03)00266-4.
  • B. Nie, S. H. Ren, W. Q. Li, L. M. Zhou, and C. Y. Liu, The hygro-thermo-electro-mechanical coupling edge-based smoothed point interpolation method for the response of functionally graded piezoelectric structure under hygrothermal environment, Eng. Anal. Bound Elem., vol. 130, pp. 29–39, 2021. DOI: 10.1016/j.enganabound.2021.05.004.
  • G. R. Liu, G. Y. Zhang, Y. T. Gu, and Y. Y. Wang, A meshfree radial point interpolation method (RPIM) for three-dimensional solids, Comput. Mech., vol. 36, no. 6, pp. 421–430, 2005. DOI: 10.1007/s00466-005-0657-6.
  • X. Y. Cui, G. R. Liu, G. Y. Li, and G. Y. Zhang, A thin plate formulation without rotation DOFs based on the radial point interpolation method and triangular cells, Int. J. Numer. Meth. Eng., vol. 85, no. 8, pp. 958–986, 2011. DOI: 10.1002/nme.3000.
  • W. Li, Q. F. Zhang, Q. Gui, and Y. B. Chai, A coupled FE-meshfree triangular element for acoustic radiation problems, Int. J. Comp. Meth-Sing., vol. 18, pp. 2041002, 2021. DOI: 10.1142/S0219876220410029.
  • Y. O. Zhang, S. N. Dang, W. Li, and Y. B. Chai, Performance of the radial point interpolation method (RPIM) with implicit time integration scheme for transient wave propagation dynamics, Comput. Math. Appl., vol. 114, pp. 95–111, 2022. DOI: 10.1016/j.camwa.2022.03.031.
  • Y. Li, G. R. Liu, Z. Q. Feng, K. S. Ng, and S. W. Li, A node-based smoothed radial point interpolation method with linear strain fields for vibration analysis of solids, Eng. Anal. Bound Elem., vol. 114, pp. 8–22, 2020. DOI: 10.1016/j.enganabound.2020.01.018.
  • L. M. Zhou, S. H. Ren, G. W. Meng, and Z. C. Ma, Node-based smoothed radial point interpolation method for electromagnetic-thermal coupled analysis, Appl. Math. Model., vol. 78, pp. 841–862, 2020. DOI: 10.1016/j.apm.2019.09.047.
  • G. R. Liu, A G space theory and a weakened weak (W-2) form for a unified formulation of compatible and incompatible methods: Part I theory, Int. J. Numer. Meth. Eng., vol. 81, no. 9, pp. 1093–1126, 2010. DOI: 10.1002/nme.2719.
  • G. R. Liu, A G space theory and a weakened weak (W-2) form for a unified formulation of compatible and incompatible methods: part II applications to solid mechanics problems, Int. J. Numer. Meth. Eng., vol. 81, no. 9, pp. 1127–1156, 2010. DOI: 10.1002/nme.2720.
  • E. Li, C. C. Chang, Z. C. He, Z. P. Zhang, and Q. Li, Smoothed finite element method for topology optimization involving incompressible materials, Eng. Optimiz., vol. 48, no. 12, pp. 2064–2089, 2016. DOI: 10.1080/0305215X.2016.1153926.
  • X. Y. Cui, Z. C. Li, H. Feng, and S. Z. Feng, Steady and transient heat transfer analysis using a stable node-based smoothed finite element method, Int. J. Therm. Sci., vol. 110, pp. 12–25, 2016. DOI: 10.1016/j.ijthermalsci.2016.06.027.
  • H. Yang, X. Y. Cui, S. Li, and Y. H. Bie, A stable node-based smoothed finite element method for metal forming analysis, Comput. Mech., vol. 63, no. 6, pp. 1147–1164, 2019. DOI: 10.1007/s00466-018-1641-2.
  • G. Wang, X. Y. Cui, H. Feng, and G. Y. Li, A stable node-based smoothed finite element method for acoustic problems, Comput. Method Appl. M., vol. 297, pp. 348–370, 2015. DOI: 10.1016/j.cma.2015.09.005.
  • S. H. Ren, G. W. Meng, B. Nie, L. M. Zhou, and H. W. Zhao, A novel stabilized node-based smoothed radial point interpolation method (SNS-RPIM) for coupling analysis of magneto-electro-elastic structures in hygrothermal environment, Comput. Method Appl. M., vol. 365, pp. 112975, 2020. DOI: 10.1016/j.cma.2020.112975.
  • L. M. Zhou, B. Nie, S. H. Ren, K. K. Zur, and J. Kim, On the hygro-thermo-electro-mechanical coupling effect on static and dynamic responses of piezoelectric beams, Compos. Struct., vol. 259, pp. 113248, 2021. DOI: 10.1016/j.compstruct.2020.113248.
  • B. Nie, G. Meng, S. Ren, J. Wang, Z. Ren, L. Zhou, P. Liu, Stable node-based smoothed radial point interpolation method for the dynamic analysis of the hygro-thermo-magneto-electro-elastic coupling problem, Eng. Anal. Bound Elem., vol. 134, pp. 435–452, 2022. DOI: 10.1016/j.enganabound.2021.10.015.
  • M. Sunar, A. Z. Al-Garni, M. H. Ali, and R. Kahraman, Finite element modeling of thermopiezomagnetic smart structures, AIAA J., vol. 40, no. 9, pp. 1846–1851, 2002. DOI: 10.2514/2.1862.
  • Y. Li, G. R. Liu, and J. H. Yue, A novel node-based smoothed radial point interpolation method for 2D and 3D solid mechanics problems, Comput. Struct., vol. 196, pp. 157–172, 2018. DOI: 10.1016/j.compstruc.2017.11.010.
  • G. R. Liu, A generalized gradient smoothing technique and the smoothed bilinear form for galerkin formulation of a wide class of computational methods, Int. J. Comput. Methods, vol. 05, no. 02, pp. 199–236, 2008. DOI: 10.1142/S0219876208001510.
  • A. H. Akbarzadeh, and Z. T. Chen, Magnetoelectroelastic behavior of rotating cylinders resting on an elastic foundation under hygrothermal loading, Smart Mater. Struct., vol. 21, no. 12, pp. 125013, 2012. DOI: 10.1088/0964-1726/21/12/125013.
  • K. Y. Sze, X. M. Yang, and L. Q. Yao, Stabilized plane and axisymmetric piezoelectric finite element models, Finite Elem Anal Des., vol. 40, no. 9–10, pp. 1105–1122, 2004. DOI: 10.1016/j.finel.2003.06.002.
  • H. Nguyen-Xuan, G. R. Liu, T. Nguyen-Thoi, and C. Nguyen-Tran, An edge-based smoothed finite element method for analysis of two-dimensional piezoelectric structures, Smart Mater. Struct., vol. 18, no. 6, pp. 065015, 2009. DOI: 10.1088/0964-1726/18/6/065015.
  • A. H. Akbarzadeh, and Z. T. Chen, Hygrothermal stresses in one-dimensional functionally graded piezoelectric media in constant magnetic field, Compos. Struct., vol. 97, pp. 317–331, 2013. DOI: 10.1016/j.compstruct.2012.09.058.
  • Y. Y. Zhou, J. Zhu, and D. Y. Liu, Dynamic analysis of laminated piezoelectric cylindrical shells, Eng. Struct., vol. 209, pp. 109945, 2020. DOI: 10.1016/j.engstruct.2019.109945.
  • S. P. A. Bordas, T. Rabczuk, N. X. Hung, V. P. Nguyen, S. Natarajan, T. Bog, D. M. Quan, N. V. Hiep, Strain smoothing in FEM and XFEM, Comput. Struct., vol. 88, no. 23–24, pp. 1419–1443, 2010. DOI: 10.1016/j.compstruc.2008.07.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.