253
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Anisotropic mechanical behavior prediction of aluminum alloy sheet based on an anisotropic GTN model: Modeling, simulation and experimental investigation

, &
Pages 314-331 | Received 31 Mar 2022, Accepted 12 Aug 2022, Published online: 03 Sep 2022

References

  • J. Zhu, S. Huang, W. Liu, J. Hu, and X. Zou, Calibration of anisotropic yield function by introducing plane strain test instead of equi-biaxial tensile test, Trans. Nonferrous Metals Soc. China, vol. 28, no. 11, pp. 2307–2313, 2018. DOI: 10.1016/S1003-6326(18)64875-7.
  • Z. Chen, J. Zhao, and G. Fang, Finite element modeling for deep-drawing of aluminum alloy sheet 6014-T4 using anisotropic yield and non-AFR models, Int. J. Adv. Manuf. Technol., vol. 104, no. 1–4, pp. 535–549, 2019. DOI: 10.1007/s00170-019-03921-w.
  • JiapingLi, et al., Corrosion resistance and forming mechanism of the lauric acid/graphene composite films on aluminum alloy by electrodeposition, Adv. Eng. Mater., vol. 23, no. 6, pp. 2001540, 2021. DOI: 10.1002/adem.202001540.
  • J. Cao, F. Li, X. Ma, and Z. Sun, Study of anisotropic crack growth behavior for aluminum alloy 7050-T7451, Eng. Fract. Mech., vol. 196, pp. 98–112, 2018. DOI: 10.1016/j.engfracmech.2018.04.011.
  • J. Lee, H. Park, S.-J. Kim, Y.-N. Kwon, and D. Kim, Numerical investigation into plastic deformation and failure in aluminum alloy sheet rubber-diaphragm forming, Int. J. Mech. Sci., vol. 142–143, pp. 112–120, 2018. DOI: 10.1016/j.ijmecsci.2018.04.022.
  • T. Tancogne-Dejean, M.B. Gorji, K. Pack, and C.C. Roth, The third Sandia Fracture Challenge: deterministic and probabilistic modeling of ductile fracture of additively-manufactured material, Int. J. Fract., vol. 218, no. 1–2, pp. 209–229, 2019. DOI: 10.1007/s10704-019-00355-z.
  • H. Quach, and Y.S. Kim, Effect of non-associated flow rule on fracture prediction of metal sheets using a novel anisotropic ductile fracture criterion, Int. J. Mech. Sci., vol. 195, pp. 106224, 2021. DOI: 10.1016/j.ijmecsci.2020.106224.
  • A. Carpinteri, M. Corrado, B. Gong, and P. Perdonò, Experimental evidence and numerical simulation of size effects on the ductile fracture of metallic materials, Int. J. Fract., vol. 211, no. 1–2, pp. 43–59, 2018. DOI: 10.1007/s10704-018-0275-x.
  • X. Shang, Z. Cui, and M. Fu, A ductile fracture model considering stress state and Zener–Hollomon parameter for hot deformation of metallic materials, Int. J. Mech. Sci., vol. 144, pp. 800–812, 2018. DOI: 10.1016/j.ijmecsci.2018.06.030.
  • S. Thuillier, E. Maire, and M. Brunet, Ductile damage in aluminium alloy thin sheets: Correlation between micro-tomography observations and mechanical modeling, Mater. Sci. Eng. A, vol. 558, pp. 217–225, 2012. DOI: 10.1016/j.msea.2012.07.116.
  • A.L. Gurson, Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow rules for porous ductile media, J. Eng. Mater. Technol., vol. 99, no. 1, pp. 2–15, 1977. DOI: 10.1115/1.3443401.
  • V. Tvergaard, Influence of voids on shear band instabilities under plane strain conditions, Int. J. Fract., vol. 17, no. 4, pp. 389–407, 1981. DOI: 10.1007/BF00036191.
  • V. Tvergaard, On localization in ductile materials containing spherical voids, Int. J. Fract., vol. 18, no. 4, pp. 237–252, 1982. DOI: 10.1007/BF00015686.
  • V. Tvergaard, and A. Needleman, Analysis of the cup-cone fracture in a round tensile bar, Acta Metall., vol. 32, no. 1, pp. 157–169, 1984. DOI: 10.1016/0001-6160(84)90213-X.
  • Z. Chen, Z. Sun, and B. Panicaud, Investigation of ductile damage during surface mechanical attrition treatment for TWIP steels using a dislocation density based viscoplasticity and damage models, Mech. Mater., vol. 129, pp. 279–289, 2019. DOI: 10.1016/j.mechmat.2018.12.009.
  • M. Djouabi, A. Ati, and P.-Y. Manach, Identification strategy influence of elastoplastic behavior law parameters on Gurson–Tvergaard–Needleman damage parameters: Application to DP980 steel, Int. J. Damage Mech., vol. 28, no. 3, pp. 427–454, 2019. DOI: 10.1177/1056789518772130.
  • D. Reddi, V. Areej, and S. Keralavarma, Ductile failure simulations using a multi-surface coupled damage-plasticity model, Int. J. Plast., vol. 118, pp. 190–214, 2019. DOI: 10.1016/j.ijplas.2019.02.007.
  • Z. He, H. Zhu, and Y. Hu, An improved shear modified GTN model for ductile fracture of aluminium alloys under different stress states and its parameters identification, Int. J. Mech. Sci., vol. 192, pp. 106081, 2021. DOI: 10.1016/j.ijmecsci.2020.106081.
  • M.B. Bettaieb, X. Lemoine, L. Duchêne, and A.M. Habraken, On the numerical integration of an advanced Gurson model, Int. J. Numer. Methods Eng., vol. 85, no. 8, pp. 1049–1072, 2011. DOI: 10.1002/nme.3010.
  • F. Xu, J. Lin, Z. Shengdun, and H. Zhang, Research of the Gurson damage model of the different yield functions during the deep-drawing process, Int. J. Adv. Manuf. Technol., vol. 91, no. 5–8, pp. 1643–1659, 2017. DOI: 10.1007/s00170-016-9873-9.
  • M. Shahzamanian, Anisotropic Gurson‐Tvergaard‐Needleman plasticity and damage model for finite element analysis of elastic‐plastic problems, Int. J. Numer. Methods Eng., vol. 115, no. 13, pp. 1527–1551, 2018. DOI: 10.1002/nme.5906.
  • D. Morin, M. Fourmeau, T. Børvik, A. Benallal, and O.S. Hopperstad, Anisotropic tensile failure of metals by the strain localization theory: An application to a high-strength aluminium alloy, Eur. J. Mech. A/Solids, vol. 69, pp. 99–112, 2018. DOI: 10.1016/j.euromechsol.2017.11.015.
  • H. Wang, Effect of the solving method of parameters on the description ability of the yield criterion about the anisotropic behavior, JME., vol. 49, no. 24, pp. 45–53, 2013. DOI: 10.3901/JME.2013.24.045.
  • H. Aguir, and H. Marouani, Gurson-Tvergaard-Needleman parameters identification using artificial neural networks in sheet metal blanking, Int. J. Mater. Form., vol. 3, no. S1, pp. 113–116, 2010. DOI: 10.1007/s12289-010-0720-5.
  • M. Rakin, Z. Cvijovic, V. Grabulov, S. Putic, and A. Sedmak, Prediction of ductile fracture initiation using micromechanical analysis, Eng. Fract. Mech., vol. 71, no. 4–6, pp. 813–827, 2004. DOI: 10.1016/S0013-7944(03)00013-4.
  • H. Tu, S. Schmauder, and U. Weber, Numerical study of electron beam welded butt joints with the GTN model, Comput. Mech., vol. 50, no. 2, pp. 245–255, 2012. DOI: 10.1007/s00466-012-0739-1.
  • R. Yildiz, and S. Yilmaz, Experimental Investigation of GTN model parameters of 6061 Al alloy, Eur. J. Mech. A/Solids, vol. 83, pp. 104040, 2020. DOI: 10.1016/j.euromechsol.2020.104040.
  • T.-S. Cao, et al., Characterization of ductile damage for a high carbon steel using 3D X-ray micro-tomography and mechanical tests–Application to the identification of a shear modified GTN model, Comput. Mater. Sci., vol. 84, pp. 175–187, 2014. DOI: 10.1016/j.commatsci.2013.12.006.
  • U. Prahl, S. Bourgeois, T. Pandorf, M. Aboutayeb, O. Debordes, and D. Weichert, Damage parameter identification by a periodic homogenization approach, Comput. Mater. Sci., vol. 25, no. 1–2, pp. 159–165, 2002. DOI: 10.1016/S0927-0256(02)00260-4.
  • D. Steglich, A. Pirondi, N. Bonora, and W. Brocks, Micromechanical modelling of cyclic plasticity incorporating damage, Int. J. Solids Struct., vol. 42, no. 2, pp. 337–351, 2005. DOI: 10.1016/j.ijsolstr.2004.06.041.
  • M. Abbasi, M. Ketabchi, H. Izadkhah, D. Fatmehsaria, and A. Aghbash, Identification of GTN model parameters by application of response surface methodology, Procedia Eng., vol. 10, pp. 415–420, 2011. DOI: 10.1016/j.proeng.2011.04.070.
  • M. Abbasi, B. Bagheri, M. Ketabchi, and D. Haghshenas, Application of response surface methodology to drive GTN model parameters and determine the FLD of tailor welded blank, Comput. Mater. Sci., vol. 53, no. 1, pp. 368–376, 2012. DOI: 10.1016/j.commatsci.2011.08.020.
  • F. Rahimidehgolan, G. Majzoobi, F. Alinejad, and J.F. Sola, Determination of the constants of GTN damage model using experiment, polynomial regression and Kriging methods, Applied Sciences., vol. 7, no. 11, pp. 1179, 2017. DOI: 10.3390/app7111179.
  • Q. Sun, Y. Lu, and J. Chen, Identification of material parameters of a shear modified GTN damage model by small punch test, Int. J. Fract., vol. 222, no. 1–2, pp. 25–35, 2020. DOI: 10.1007/s10704-020-00428-4.
  • T.D. Shikalgar, B. Dutta, and J. Chattopadhyay, Analysis of p-SPT specimens using Gurson parameters ascertained by Artificial Neural Network, Eng. Fract. Mech., vol. 240, pp. 107324, 2020. DOI: 10.1016/j.engfracmech.2020.107324.
  • T. Park, and K. Chung, Non-associated flow rule with symmetric stiffness modulus for isotropic-kinematic hardening and its application for earing in circular cup drawing, Int. J. Solids Struct., vol. 49, no. 25, pp. 3582–3593, 2012. DOI: 10.1016/j.ijsolstr.2012.02.015.
  • H. Wang, Y. Yan, M. Wan, and X. Wu, Experimental investigation and constitutive modeling for the hardening behavior of 5754O aluminum alloy sheet under two-stage loading, Int. J. Solids Struct., vol. 49, no. 26, pp. 3693–3710, 2012. DOI: 10.1016/j.ijsolstr.2012.08.007.
  • H.W. Swift, Plastic instability under plane stress, J. Mech. Phys. Solids, vol. 1, no. 1, pp. 1–18, 1952. DOI: 10.1016/0022-5096(52)90002-1.
  • N. Aravas, On the numerical integration of a class of pressure‐dependent plasticity models, Int. J. Numer. Methods Eng., vol. 24, no. 7, pp. 1395–1416, 1987. DOI: 10.1002/nme.1620240713.
  • Z. Zhang, Explicit consistent tangent moduli with a return mapping algorithm for pressure-dependent elastoplasticity models, Comput. Methods Appl. Mech. Eng., vol. 121, no. 1–4, pp. 29–44, 1995. DOI: 10.1016/0045-7825(94)00707-T.
  • Z. Chen, and X. Dong, The GTN damage model based on Hill’48 anisotropic yield criterion and its application in sheet metal forming, Comput. Mater. Sci., vol. 44, no. 3, pp. 1013–1021, 2009. DOI: 10.1016/j.commatsci.2008.07.020.
  • International Standard ISO 6892-1. Metallic materials - Tensile Testing. Part 1: Method of Test at Room Temperature. International Organization for Standardization, Geneva, Switzerland, 2017.
  • G. Charca Ramos, M. Stout, R.E. Bolmaro, J.W. Signorelli, and P. Turner, Study of a drawing-quality sheet steel. I: Stress/strain behaviors and Lankford coefficients by experiments and micromechanical simulations, Int. J. Solids Struct., vol. 47, no. 17, pp. 2285–2293, 2010. DOI: 10.1016/j.ijsolstr.2010.04.023.
  • H.H. Nguyen, T.N. Nguyen, and H.C. Vu, Ductile fracture prediction and forming assessment of AA6061-T6 aluminum alloy sheets, Int. J. Fract., vol. 209, no. 1–2, pp. 143–162, 2018. DOI: 10.1007/s10704-017-0249-4.
  • Y. Xiao, and Y. Hu, An extended iterative identification method for the GISSMO model, Metals, vol. 9, no. 5, pp. 568, 2019. DOI: 10.3390/met9050568.
  • Z. Xue, M. Pontin, F. Zok, and J.W. Hutchinson, Calibration procedures for a computational model of ductile fracture, Eng. Fract. Mech., vol. 77, no. 3, pp. 492–509, 2010. DOI: 10.1016/j.engfracmech.2009.10.007.
  • Q. Sun, Research on the Damage and Fracture Behavior of Steel Strip during Rolling Process. Shanghai, China: East China University of Science and Technology, 2016.
  • A. Kami, B.M. Dariani, A.S. Vanini, D.S. Comsa, and D. Banabic, Numerical determination of the forming limit curves of anisotropic sheet metals using GTN damage model, J. Mater. Process. Technol., vol. 216, pp. 472–483, 2015. DOI: 10.1016/j.jmatprotec.2014.10.017.
  • H. Chalal and F. Abed-Meraim, Determination of forming limit diagrams based on ductile damage models and necking criteria, Lat. Am. J. Solids Struct., vol. 14, no. 10, pp. 1872–1892, 2017. DOI: 10.1590/1679-78253481.
  • S. Jiang, Y.M. Hu, J. Xiao, X. Jin, and W. Luo, Meso mechanical characterization of stamping damage evolution and ductile fracture of aluminum alloy 6016, J. Plast. Eng., vol. 26, pp. 133–140, 2019. (in Chinese)
  • B. Teng, W. Wang, and Y. Xu, Ductile fracture prediction in aluminium alloy 5A06 sheet forming based on GTN damage model, Eng. Fract. Mech., vol. 186, pp. 242–254, 2017. DOI: 10.1016/j.engfracmech.2017.10.014.
  • F. Feng, et al., Application of a GTN damage model predicting the fracture of 5052-O aluminum alloy high-speed electromagnetic impaction, Metals, vol. 8, no. 10, pp. 761, 2018. DOI: 10.3390/met8100761.
  • J. Ko, J. Park, and J.W. Jeong, Energy saving potential of a model-predicted frost prevention method for energy recovery ventilators, Appl. Therm. Eng., vol. 185, pp. 116450, 2021. DOI: 10.1016/j.applthermaleng.2020.116450.
  • A. Javed, A.A. Baig, K. Djidjeli, A. Shahzad, and A. Hameed, Upwind skewed radial basis functions (USRBF) for solution of highly convective problems over meshfree nodes, Eng. Comput., vol. 37, no. 2, pp. 1081–1097, 2021. DOI: 10.1007/s00366-019-00873-3.
  • W.Y. Zou, S.Q. Yin, and W.T. Wang, Spatial interpolation of the extreme hourly precipitation at different return levels in the Haihe River basin, J. Hydrol., vol. 598, pp. 126273, 2021. DOI: 10.1016/j.jhydrol.2021.126273.
  • J. Li, W. Quan, B. Han, Z. Wang, and J. Fang, Design and optimization of multilayer cylindrical magnetic shield for SERF Atomic Magnetometer Application, IEEE Sensors J., vol. 20, no. 4, pp. 1793–1800, 2020. DOI: 10.1109/JSEN.2019.2950420.
  • N. Kamikawa, and H. Morino, Quantitative analysis of load–displacement curves in Erichsen Cupping test for low carbon steel sheet, Metall. Mater. Trans A., vol. 50, no. 11, pp. 5023–5037, 2019. DOI: 10.1007/s11661-019-05418-3.
  • International Standard ISO 20482. Metallic materials - Sheet and strip -Erichsen Cupping Test, International Organization for Standardization, Geneva, Switzerland, 2013.
  • S. Sunil, and K.B. Pai, Investigation of formability of CRCA steel sheet by Erichsen Cupping Test analysis, IOSRJMCE., vol. 11, no. 2, pp. 52–55, 2014. DOI: 10.9790/1684-11215255.
  • A. Kocańda, and C. Jasiński, Extended evaluation of Erichsen cupping test results by means of laser speckle, Arch. Civil Mech. Eng., vol. 16, no. 2, pp. 211–216, 2016. DOI: 10.1016/j.acme.2015.10.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.