275
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Nonlinear buckling analysis of a sandwich composite semi-ellipsoidal shell under hydrostatic pressure: A numerical and experimental investigation

ORCID Icon & ORCID Icon
Pages 438-452 | Received 17 Jun 2022, Accepted 12 Aug 2022, Published online: 25 Aug 2022

References

  • D. Zenkert, An introduction to sandwich construction: Department of lightweight structures, R. Inst. Technol., 1993.
  • V.S. Kathavate, K. Amudha, L. Adithya, A. Pandurangan, N.R. Ramesh, and K. Gopakumar, Mechanical behaviour of composite materials for marine applications-an experimental and computational approach, J. Mech. Behav. Mater., pp. 20180003, 2018. DOI: 10.1515/jmbm-2018-0003.
  • J.W. Hutchinson and M.Y. He, Buckling of cylindrical sandwich shells with metal foam cores, Int. J. Solids Struct., vol. 37, no. 4647, pp. 6777–6794, 2000. DOI: 10.1016/S0020-7683(99)00314-5.
  • J.H.J. Han, G.A. Kardomateas, and G.J. Simitses, Elasticity, shell theory and finite element results for the buckling of long sandwich cylindrical shells under external pressure, Compos. Part B Eng., vol. 35, no. 68, pp. 591–598, 2004. DOI: 10.1016/j.compositesb.2003.07.002.
  • G.A. Kardomateas and G.J. Simitses, Buckling of long sandwich cylindrical shells under external pressure, J. Appl. Mech. Trans. ASME., vol. 72, no. 4, pp. 493–499, 2005. DOI: 10.1115/1.1934513.
  • M. Ohga, A.S. Wijenayaka, and J.G.A. Croll, Reduced stiffness buckling of sandwich cylindrical shells under uniform external pressure, Thin-Walled Struct., vol. 43, no. 8, pp. 1188–1201, 2005. DOI: 10.1016/j.tws.2005.03.006.
  • G. Cha and M. Schultz, Buckling analysis of a honeycomb-core composite cylinder with initial geometric imperfections, NASA/TM-2013-217967.
  • J.S. Moita, A.L. Araújo, V.M.F. Correia, C.M.M. Soares, and C.A.M. Soares, Buckling and geometrically nonlinear analysis of sandwich structures, Int. J. Mech. Sci., vol. 92, pp. 154–161, 2015. DOI: 10.1016/j.ijmecsci.2014.12.008.
  • M. Malinowski, T. Belica, and K. Magnucki, Buckling of sandwich cylindrical shell with corrugated main core and three-layer faces, Appl. Comput. Sci., vol. 10, pp. 18–25, 2014.
  • A.V. Lopatin and E.V. Morozov, Buckling of the composite sandwich cylindrical shell with clamped ends under uniform external pressure, Compos. Struct., vol. 122, pp. 209–216, 2015. DOI: 10.1016/j.compstruct.2014.11.048.
  • T. Dey and L.S. Ramachandra, Linear and nonlinear parametric instability behaviour of cylindrical sandwich panels subjected to various mechanical edge loadings, Mech. Adv. Mater. Struct., vol. 23, no. 1, pp. 8–21, 2016. DOI: 10.1080/15376494.2014.918222.
  • C. Bisagni, Buckling tests of sandwich cylindrical shells with and without cut-outs, Proceedings of the American Society for Composites. Williamsburg, United States, 2016.
  • P.B. Su, B. Han, M. Yang, Z.H. Wei, Z.Y. Zhao, Q.C. Zhang, Q. Zhang, K.K. Qin, T.J. Lu, Axial compressive collapse of ultralight corrugated sandwich cylindrical shells, Mater. Des., vol. 160, pp. 325–337, 2018. DOI: 10.1016/j.matdes.2018.09.034.
  • D.S. Ghahfarokhi and J. Rahimi, Buckling analysis of composite lattice sandwich shells under uniaxial compression based on the effective analytical equivalent approach, Compos. Part B Eng., vol. 174, pp. 106932, 2019. DOI: 10.1016/j.compositesb.2019.106932.
  • P.M. Vuong and N.D. Duc, Nonlinear buckling and post-buckling behaviour of shear deformable sandwich toroidal shell segments with functionally graded core subjected to axial compression and thermal loads, Aerosp. Sci. Technol., vol. 106, pp. 106084, 2020. DOI: 10.1016/j.ast.2020.106084.
  • S.A. Ahmadi, M.H. Pashaei, and R.A. Jafari-Talookolaei, Buckling analysis of sandwich orthotropic cylindrical shells by considering the geometrical imperfection in face sheets, ACM., vol. 13, no. 1, pp. 5–20, 2019. DOI: 10.24132/acm.2019.460.
  • V.S. Kathavate, D.N. Pawar, and A.S. Adkine, A multi-level damage and creep behaviour of material subjected to high pressure: Metal versus composites – A micromechanics approach, Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci., vol. 233, no. 3, pp. 772–715, 2019. DOI: https://doi.org/10.1177/0954406217739040.
  • V.S. Kathavate, K. Amudha, N.R. Ramesh, and G.A. Ramadass, Failure analysis of composite material under external hydrostatic pressure: A nonlinear approach, Materialstoday: Proc., vol. 5, no. 11, pp. 24299–24612, 2018. DOI: 10.1016/j.matpr.2018.10.225.
  • G.R. Johnson and W.H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Eng. Fract. Mech., vol. 21, no. 1, pp. 31–48, 1985. DOI: 10.1016/0013-7944(85)90052-9.
  • V.S. Kathavate, V.N. Pawar, and A.S. Adkine, Micromechanics-based approach for the effective estimation of the elastic properties of fiber-reinforced polymer matrix composite, J. Micromech. Mol. Phys., vol. 04, no. 03, pp. 1950005, 2019. DOI: 10.1142/S242491301950005X.
  • V.S. Kathavate, D.N. Pawar, N.S. Bagal, A.S. Adkine, and V.G. Salunkhe, Micromechanics based models for effective evaluation of elastic properties of reinforced ploymer matrix composites, Materialstoday: Proc. DOI: 10.1016/j.matpr.2020.01.166.
  • V.S. Kathavate, D.N. Pawar, N.S. Bagal, and A.S. Adkine, Progressive failure analysis of fiber reinforced polymer matrix composites, Materialstoday: Proc., vol. 22, pp. 1524–1534, 2020. DOI: 10.1016/j.matpr.2020.02.070.
  • M. Wojciechowski and M. Lefik, On the static nature of minimal kinematic boundary conditions for computational homogenisation, Eng. Trans., vol. 64, pp. 581–587, 2016.
  • I.U. Balbin, C. Bisagni, M.R. Schultz, and M.W. Hilburger, Scaling methodology applied to buckling of sandwich composite cylindrical shells, AIAA J., vol. 58, no. 8, pp. 3680–3689, 2020. DOI: 10.2514/1.J058999.
  • D. Pan, L. Chen, Q. Zhao, L. Chen, M. Lin, C. Li, Local buckling theoretical calculation method of the FRP foam sandwich cylinder under axial compression, Compos. Struct., vol. 246, pp. 112371, 2020. DOI: 10.1016/j.compstruct.2020.112371.
  • I.U. Balbin and C. Bisagni, Buckling of sandwich cylindrical shells with shear deformable core through nondimensional parameters, Thin-Walled Struct., vol. 161, pp. 107393, 2021. DOI: 10.1016/j.tws.2020.107393.
  • N. Akkas, Static and dynamic buckling analysis of spherical sandwich shells, Int. J. Mech. Sci., vol. 16, no. 7, pp. 461–472, 1974. DOI: 10.1016/0020-7403(74)90086-1.
  • A. Sankar, S. El-Borgi, T.B. Zineb, and M. Ganapathi, Dynamic snap-through buckling of CNT reinforced composite sandwich spherical caps, Compos. Part B Eng., vol. 99, pp. 472–482, 2016. DOI: 10.1016/j.compositesb.2016.06.027.
  • S. Wang, S. Li, and J. He, Buckling behaviour of sandwich hemispherical structure considering deformation modes under axial compression, Compos. Struct., vol. 163, pp. 312–324, 2017. DOI: 10.1016/j.compstruct.2016.12.050.
  • M. Haboussi, A. Sankar, and M. Ganapathi, Nonlinear axisymmetric dynamic buckling of functionally graded graphene reinforced porous nanocomposite spherical caps, Mech. Adv. Mater. Struct., vol. 28, no. 2, pp. 127–140, 2021. DOI: 10.1080/15376494.2018.1549296.
  • D.T. Manh, V.T.T. Anh, P.D. Nguyen, and N.D. Duc, Nonlinear post-buckling of CNTs reinforced sandwich-structured composite annular spherical shells, Int. J. Struct. Stab. Dyn., vol. 20, pp. 1–24, 2020. DOI: 10.1142/S0219455420500170.
  • K.M. Fard and M. Livani, The buckling of truncated conical sandwich panels under axial compression and external pressure, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 229, no. 11, pp. 1965–1978, 2015. DOI: https://doi.org/10.1177/0954406214552683.
  • D.V. Dung, L.K. Hoa, B.T. Thuyet, and N.T. Nga, Buckling analysis of functionally graded material (FGM) sandwich truncated conical shells reinforced by FGM stiffeners filled inside by elastic foundations, Appl. Math. Mech.-Engl. Ed., vol. 37, no. 7, pp. 879–902, 2016. DOI: 10.1007/s10483-016-2097-9.
  • A.H. Sofiyev, The stability analysis of shear deformable FGM sandwich conical shells under the axial load, Compos. Struct., vol. 176, pp. 803–811, 2017. DOI: 10.1016/j.compstruct.2017.06.022.
  • M. Talebitooti, Analytical and finite-element solutions for the buckling of composite sandwich conical shell with clamped ends under external pressure, Arch. Appl. Mech., vol. 87, no. 1, pp. 59–73, 2017. DOI: 10.1007/s00419-016-1176-y.
  • M.E. Kazemi, M.A. Kouchakzadeh, and M. Shakouri, Stability analysis of generally laminated conical shells with variable thickness under axial compression. Mech, Adv. Mater. Struct., vol. 27, no. 16, pp. 1373–1386, 2020. DOI: 10.1080/15376494.2018.1511016.
  • L.K. Hoa, N.T. Trung, P.V. Hoan, and P.L. Ben, Nonlinear instability analysis of functionally graded sandwich truncated conical shells reinforced by stiffeners resting on elastic foundations, Int. J. Str. Stab. Dyn., vol. 19, no. 08, pp. 1950082, 2019. DOI: 10.1142/S0219455419500822.
  • M. Zarei, G.H. Rahimi, and M. Hemmatnezhad, Global buckling analysis of laminated sandwich conical shells with reinforced lattice cores based on the first-order shear deformation theory, Int. J. Mech. Sci., vol. 187, pp. 105872, 2020. DOI: 10.1016/j.ijmecsci.2020.105872.
  • V. Barathan and V. Rajamohan, Nonlinear buckling analysis of semi-elliptical dome: Numerical and experimental investigations, Thin-Walled Struct., vol. 171, pp. 108708, 2022. DOI: 10.1016/j.tws.2021.108708.
  • H. Elangovan and V. Rajamohan, Dynamic characterization of tapered composite sandwich plate with honeycomb core: Numerical and experimental investigations, Thin-Walled Struct., vol. 178, pp. 109515, 2022. DOI: 10.1016/j.tws.2022.109515.
  • Y. Wang, W. Tang, J. Zhang, S. Zhang, and Y. Chen, Buckling of imperfect spherical caps with fixed boundary under uniform external pressure, Mar. Struct., vol. 65, pp. 1–11, 2019. DOI: 10.1016/j.marstruc.2019.01.004.
  • ANSYS, Theory reference ANSYS, 2016.
  • ASTM D3039/D3039M -17. Standard test method for tensile properties of polymer matrix composite materials, pp. 1–13, 2014.
  • ASTM D3518/D3518M -18 Standard test method for in-plane shear response of polymer matrix composite materials by a tensile test of a ±45° Laminate, pp. 1–7, 2007.
  • C.W. Schwingshackl, G.S. Aglietti, and P.R. Cunningham, Determination of honeycomb material properties: Existing theories and an alternative dynamic approach, J. Aerosp. Eng., vol. 19, no. 3, pp. 177–183, 2006. DOI: 10.1061/(ASCE)0893-1321(2006)19:3(177).
  • M. Gunasegeran and P. Edwin Sudhagar, Investigation of free and forced vibration of GFRP corrugated bio-inspired sandwich beam with HSDT: Numerical and experimental study, Mech. Adv. Mater. Struct., vol. 23, pp. 1–5, 2022. DOI: 10.1080/15376494.2022.2081750.
  • A. Muc, A. Stawiarski, and P. Romanowicz, Experimental investigations of compressed sandwich composite/honeycomb cylindrical shells, Appl. Compos. Mater., vol. 25, no. 1, pp. 177–189, 2018. DOI: 10.1007/s10443-017-9614-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.