204
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

On capturing rate-dependent anisotropic behavior of sheet metal forming using a viscoplastic computational framework

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 518-532 | Received 04 Jun 2022, Accepted 20 Aug 2022, Published online: 05 Sep 2022

References

  • B. Smith, A. Spulber, S. Modi, and T. Fiorelli, Technology Roadmaps: Intelligent Mobility Technology, Materials and Manufacturing Processes, and Light Duty Vehicle Propulsion, Center for Automotive Research, Ann Arbor, MI, 2017.
  • Chang, K.-H., Product manufacturing and cost estimating using CAD/CAE, Elsevier, pp. 134–135, 2015.
  • D. Banabic, Sheet Metal Forming Process: Constitutive Modelling and Numerical Simulation, Springer, 2010. doi:10.1007/978-3-540-88113-1
  • H.-C. Wu, Anisotropic plasticity for sheet metals using the concept of combined isotropic-kinematic hardening, Int. J. Plast., vol. 18, no. 12, pp. 1661–1682, 2002. DOI: 10.1016/S0749-6419(01)00060-2.
  • J. Coer, H. Laurent, M. C. Oliveira, P.-Y. Manach, and L. F. Menezes, Detailed experimental and numerical analysis of a cylindrical cup deep drawing: Pros and cons of using solid-shell elements, Int. J. Mater. Form., vol. 11, no. 3, pp. 357–373, 2018. DOI: 10.1007/s12289-017-1357-4.
  • Z. Chen, J. Zhao, and G. Fang, Finite element modeling for deep-drawing of aluminum alloy sheet 6014-T4 using anisotropic yield and non-AFR models, Int. J. Adv. Manuf. Technol., vol. 104, no. 1–4, pp. 535–549, 2019. DOI: 10.1007/s00170-019-03921-w.
  • B. Wu, H. Wang, T. Taylor, and J. Yanagimoto, A non-associated constitutive model considering anisotropic hardening for orthotropic anisotropic materials in sheet metal forming, Int. J. Mech. Sci., vol. 169, p. 105320, 2020. DOI: 10.1016/j.ijmecsci.2019.105320.
  • B. Wu, K. Ito, N. Mori, T. Oya, T. Taylor, and J. Yanagimoto, Constitutive equations based on non-associated flow rule for the analysis of forming of anisotropic sheet metals, Int. J. Precis. Eng. Manuf.-Green Tech., vol. 7, no. 2, pp. 465–480, 2020. DOI: 10.1007/s40684-019-00032-5.
  • Z. He, K. Zhang, H. Zhu, Y. Lin, M. W. Fu, and S. Yuan, An anisotropic constitutive model for forming of aluminum tubes under both biaxial tensión and pure shear stress states, Int. J. Plast., vol. 152, p. 103259, 2022. DOI: 10.1016/j.ijplas.2022.103259.
  • H. Rong, P. Hu, L. Ying, W. Hou, and M. Dai, Modeling the anisotropic plasticity and damage of AA7075 alloy in hot forming, Int. J. Mech. Sci., vol. 215, p. 106951, 2022. DOI: 10.1016/j.ijmecsci.2021.106951.
  • D. C. Ahn, J. W. Yoon, and K. Y. Kim, Modeling of anisotropic plastic behavior of ferritic stainless Steel sheet, Int. J. Mech. Sci., vol. 51, no. 9–10, pp. 718–725, 2009. DOI: 10.1016/j.ijmecsci.2009.08.003.
  • M. Dzoja, V. Cvitanic, M. Safaei, and L. Krstulovic-Opara, Modelling the plastic anisotropy evolution of AA5754-H22 sheet and implementation in predicting cylindrical cup drawing process, Eur. J. Mech./A Solids, vol. 77, p. 103806, 2019. DOI: 10.1016/j.euromechsol.2019.103806.
  • S. Kalpakjian and S. R. Schmid, Manufacturing Engineering and Technology-Sixth Edition in SI Units, Prentice Hall, 2009.
  • J. L. Chaboche, A review of some plasticity and viscoplasticity constitutive theories, Int. J. Plast., vol. 24, no. 10, pp. 1642–1693, 2008. DOI: 10.1016/j.ijplas.2008.03.009.
  • S. Bodner and Y. Partom, Constitutive equations for elastic viscoplastic strain-hardening materials, Trans. ASME, J. Appl. Mech., vol. 42, no. 2, pp. 385–389, 1975. DOI: 10.1115/1.3423586.
  • F. Zerilli and R. Armstrong, Dislocation mechanics based constitutive relations for material dynamics calculations, J. Appl. Phys., vol. 61, no. 5, pp. 1816–1825, 1987. DOI: 10.1063/1.338024.
  • G. Johnson and W. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Eng. Fract. Mech., vol. 21, no. 1, pp. 31–48, 1985. DOI: 10.1016/0013-7944(85)90052-9.
  • S. Cowper and P. Symonds, Strain hardening and strain-rate effects in the impact loading of cantiléver beams, Technical Report No. 28, Division of Applied Mathematics Brown University, 1957.
  • S. Nemat-Nasser and Y. Li, Flow stress of FCC polycrystals with application to OFHC Cu, Acta Mater., vol. 46, no. 2, pp. 565–577, 1998. DOI: 10.1016/S1359-6454(97)00230-9.
  • G. Voyiadjis and A. Almasri, A physically based constitutive model for FCC metals with applications to dynamic hardness, Mech. Mater., vol. 40, no. 6, pp. 549–563, 2008. DOI: 10.1016/j.mechmat.2007.11.008.
  • E. Voce, The relationship between stress and strain for homogeneous deformation, J. Inst. Met., vol. 74, pp. 537–546, 1948.
  • U. Kocks and H. Mecking, Physics and phenomenology of strain hardening: The FCC case, Prog. Mater. Sci., vol. 48, no. 3, pp. 171–273, 2003. DOI: 10.1016/S0079-6425(02)00003-8.
  • D. Steinberg, S. Cochran, and M. Guinan, A constitutive model for strain rates from 10−4 to 106 s−1, J. Appl. Phys., vol. 51, no. 3, pp. 1498–1504, 1980. DOI: 10.1063/1.327799.
  • R. Austin and D. McDowell, A dislocation-based constitutive model for viscoplastic deformation of FCC metals at very high strain rates, Int. J. Plast., vol. 27, no. 1, pp. 1–24, 2011. DOI: 10.1016/j.ijplas.2010.03.002.
  • B. Tang and Y. Lou, Effect of anisotropic yield functions on the accuracy of material flow and its experimental verification, Acta Mech. Solida Sin., vol. 32, no. 1, p. 50, 2019. DOI: 10.1007/s10338-018-0043-5.
  • J. Lee, H. J. Bong, D. Kim, Y.-S. Lee, Y. Choi, and M.-G. Lee, Mechanical properties and formability of heat-treated 7000-series high-strength aluminum alloy: Experiments and finite element modeling, Met. Mater. Int., vol. 26, no. 5, pp. 682–694, 2020. DOI: 10.1007/s12540-019-00353-9.
  • R. Hill, A theory of yielding and plastic flow anisotropic metals, Proc. R. Soc. Lon. A, vol. 193, pp. 281–297, 1948.
  • J. J. Skrzypek, Plasticity and Creep, R. B. Hetnarski (ed.), London CRC Press Inc, 2000.
  • J. L. Chaboche and G. Rousselir, On the plastic and viscoplastic constitutive equations: Part I – Rules developed with internal variable concept, Trans. ASME, J. Press. Vessel Technol., vol. 105, no. 2, pp. 153–158, 1983. DOI: 10.1115/1.3264257.
  • F. Dunne and N. Petrinic, Introduction to Computational Plasticity, Oxford University Press, 2005.
  • C. Hernandez, A. Maranon, I. A. Ashcroft, and J. P. Casas-Rodriguez, A computational determination of the Cowper-Symonds parameters from a single Taylor test, Appl. Math. Modell., vol. 37, no. 7, pp. 4698–4708, 2013. DOI: 10.1016/j.apm.2012.10.010.
  • S. Yuen and G. Nurick, Experimental and numerical studies on the response of quadrangular stiffened plates: Part I: Subjected to uniform blast load, Int. J. Impact Eng., vol. 31, no. 1, pp. 55–83, 2005. DOI: 10.1016/j.ijimpeng.2003.09.048.
  • G. Nurick and J. Martin, Deformation of thin plates subjected to impulsive loading – a review Part II: Experimental studies, Int. J. Impact Eng., vol. 8, no. 2, pp. 171–186, 1989. DOI: 10.1016/0734-743X(89)90015-8.
  • M. Olson, G. Nurick, and J. Fagnan, Deformation and rupture of blast loaded square plates – predictions and experiments, Int. J. Impact Eng., vol. 13, no. 2, pp. 279–292, 1993. DOI: 10.1016/0734-743X(93)90097-Q.
  • K. Ramajeyathilagam, C. P. Vendhan, and V. Bhujanga Rao, Non-linear transient dynamic response of rectangular plates under shock loading, Int. J. Impact Eng., vol. 24, no. 10, pp. 999–1015, 2000. DOI: 10.1016/S0734-743X(00)00018-X.
  • Y. Yuan and P. Tan, Deformation and failure of rectangular plates subjected to impulsive loadings, Int. J. Impact Eng., vol. 59, pp. 46–59, 2013. DOI: 10.1016/j.ijimpeng.2013.03.009.
  • A. Skrlec and J. Klemenc, Estimating the strain-rate-dependent parameters of the Cowper-Symonds and Johnson-Cook material models using Taguchi arrays, SV-JME, vol. 62, no. 4, pp. 220–230, 2016. DOI: 10.5545/sv-jme.2015.3266.
  • Dassault Systemes Simulia Corp., Abaqus 6.12 documentation, 2012.
  • A. Bhaduri, Mechanical Properties and Working of Metals and Alloys, Springer Series in Material Science, Vol. 264, Springer Nature, Singapore, 2018.
  • E. E. Michaelis, The r and n test for every day testing in the sheet metal industry, Sheet Met Ind., vol. 56, no. 10, pp. 936–941, 1979.
  • S.P. Keeler, Properties related to forming, Sheet Met. Ind., vol. 48, no. 7, pp. 511–517, 1971.
  • J. Willis, J. C. Blade, A proposed earing test for sheet metal, Sheet Met Ind., vol. 4, pp. 316, 1966.
  • O. H. Kemmis, The assessment of the drawing and forming qualitites of sheet metal by the Swift Cup-Forming Test, Sheet Met Ind., vol. 34, pp. 203, 1957.
  • S. L. Semiatin, Metalworking: Bulk Forming, ASM Handbook, ASM International, Materials Park, OH, 2005.
  • L. S. Lasdon, A. D. Waren, A. Jain, and M. Ratner, Design and testing of generalized reduced gradient code for non-linear programming, ACM Trans. Math. Softw., vol. 4, no. 1, pp. 34–50, 1978. DOI: 10.1145/355769.355773.
  • A. Maia, E. Ferreira, M. C. Oliveira, L. F. Menezes, and A. Andrade-Campos, Numerical optimization strategies for springback compensation in sheet metal forming, Comput. Methods Prod. Eng., pp. 51–82, 2017.
  • A. Afdhal, L. Gunawan, S. P. Santosa, I. S. Putra, and H. Huh, Measurement of mechanical properties of St 37 material at high strain rates using a split Hopkinson pressure bar, AMM, vol. 660, pp. 562–566, 2014. DOI: 10.4028/www.scientific.net/AMM.660.562.
  • N. Jones, Structural Impact, Cambridge University Press, 2003.
  • D. D. Fuller, Theory and Practice of Lubrication for Engineers, 2nd ed., Wiley-Interscience, 1984.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.